Abstract:
Exemplary embodiments of the present disclosure are related to a wireless power resonator and method that includes a wireless power transmit element. The wireless power transmit element may include a substantially planar transmit antenna configured to generate a magnetic field and formed from a conductive trace including a plurality of distributed inductive elements along the conductive trace. The transmit element may further include a filter formed from selected ones of the plurality of distributed inductive elements of the planar transmit antenna and configured to generate at least one frequency response.
Abstract:
Disclosed is an electronic device comprising a plurality of power receiving elements. Each power receiving element may be configured to electromagnetically couple to an externally generated magnetic field to receive power wirelessly. A plurality of switches may be connected to the plurality of power receiving elements. An output circuit may provide wirelessly received power to the electronic device. The plurality of switches may be configured to selectively short circuit at least one of the plurality of power receiving elements.
Abstract:
Exemplary embodiments are directed to an apparatus for controlling magnetic field distribution including a wireless transmit antenna configured to generate a magnetic field for wirelessly transferring power to a charge-receiving device with the wireless transmit antenna, a parasitic antenna located near the wireless transmit antenna, and a switch configured to selectively enable the parasitic antenna to modify the magnetic field in response to an antenna parameter that indicates the presence of the charge-receiving device relative to the parasitic antenna.
Abstract:
A wireless power transfer system may include a primary resonator and one or more secondary resonators. At least one of the secondary resonators lie in overlapping relation to the primary resonator. An electromagnetic (EM) field generated by the primary resonator can couple to the secondary resonators, thus inducing current flow in the secondary resonators. EM fields generated by the secondary resonators interact with the EM field from the primary resonator to produce a resultant EM field.
Abstract:
An apparatus and method for lost power detection are described. In one implementation, an apparatus for wirelessly transferring power includes an antenna configured to provide wireless power to a chargeable device sufficient to charge or power the chargeable device positioned within a charging region of the antenna. The apparatus further includes a receiver configured to receive from the chargeable device a measurement of a first amount of energy received by the chargeable device over a first period of time. The apparatus further includes a processor configured to measure a second amount of energy provided by the antenna over a second period of time, compare the first amount of energy to the second amount of energy, and determine whether another object is absorbing power provided via the antenna based at least in part on comparing the first amount and the second amount of energy.
Abstract:
Exemplary embodiments are directed to variable power wireless power transmission. A method may include conveying wireless power to a device at a first power level during a time period. The method may further include conveying wireless power to one or more other devices at a second, different power level during another time period.
Abstract:
Systems, methods and apparatus are disclosed for a dual mode wireless power receiver. In accordance with on aspect, an apparatus for receiving wireless power is provided. The apparatus includes a first coil configured to wirelessly receive power from a first transmitter configured to generate a first alternating magnetic field having a first frequency. The apparatus further includes a second coil configured to wirelessly receive power from a second transmitter configured to generate a second alternating magnetic field having a second frequency higher than the first frequency. The second coil is positioned to enclose the first coil. A first coupling factor between the first coil and a coil of the first transmitter is higher than a second coupling factor between the second coil and a coil of the second transmitter when the first and second coils are positioned within respective charging regions of the first and second transmitters.
Abstract:
A two-stage power delivery network includes a voltage regulator and an interposer. The interposer includes a packaging substrate having an embedded inductor. The embedded inductor includes a set of traces and a set of through substrate vias at opposing ends of the traces. The interposer is coupled to the voltage regulator. The two-stage power delivery network also includes a semiconductor die supported by the packaging substrate. The two-stage power delivery network also includes a capacitor that is supported by the packaging substrate. The capacitor is operable to provide a decoupling capacitance associated with the semiconductor die and a capacitance to reduce a switching noise of the voltage regulator.
Abstract:
Exemplary embodiments are directed to a power controller. A method may include comparing a summation voltage comprising a sum of an amplified error voltage and a reference voltage with an estimated voltage to generate a comparator output signal. The method may also include generating a gate drive signal from the comparator output signal and filtering a signal coupled to a power stage to generate the estimated voltage.
Abstract:
An apparatus and method for transmission of wireless power to a plurality of chargeable devices. The apparatus and method include and provide for a wireless power transmitter including a power transmitting element configured to use a current at a first level to wirelessly transmit power sufficient to provide power to one or more chargeable devices positioned within a charging region. The apparatus and method further include and provide for a controller to detect a subsequent chargeable device positioned within the charging region and to adjust the current from the first level to a default level prior to communication with the subsequent chargeable device.