Abstract:
Wireless node selects modulation coding schemes (MCS) and number of spatial streams for transmitting data to devices via a MU-MIMO transmission based on the total number of spatial streams. In one implementation, a wireless node selects first MCS, first number of spatial stream(s) for a first device, and total number of spatial streams to be used in the MU-MIMO transmission so as to maximize the data rate to the first device, then selects a second MCS and a second number of spatial stream(s) for a second device based on the selected total number of spatial streams. In another implementation, the wireless node toggles the first selection of the MCS and spatial stream(s) between the first and second devices for fairness purposes. In another implementation, a wireless selects the MCS and the spatial streams for the receiving nodes so as to maximize the aggregate data rate for the MU-MIMO transmission.
Abstract:
Described is a frame format for a protocol data unit (PDU). The frame format may support enhanced features in a communication network. The first frame format is based at least in part on a second frame format that is predefined by a communication protocol. The first frame format may support enhanced features for those devices that know the first frame format and which are capable of interpreting the first frame format. Legacy devices may interpret the PDU as following the second frame format according to the communication protocol. The first frame format may be created by overloading some fields in the second frame format. The first frame format may match parts of the second frame format that are used for contention timing (or other medium synchronization). In one example, the PDU may include an instruction creating a media idle measurement period.
Abstract:
A response interframe space (RIFS) time period may be adapted in a communication system. The RIFS time period may be determined based, at least in part, on a processing time used by a receiving device to process a received physical layer transmission from a transmitting device. The RIFS may be optimized in consideration of channel conditions for a particular communications channel, capabilities of a receiving device, and/or characteristics of a particular physical layer transmission. For example, the RIFS may be dependent on characteristics of a final transmission symbol used to transmit a physical layer transmission. The RIFS may depend on a processing time associated with decoding forward error correction (FEC) encoded blocks that end in the final transmission symbol. The RIFS may depend on a quantity of decoding iterations in a communication system that uses iterative decoding of FEC encoded blocks.
Abstract:
Transmission power of a signal may be lowered in response to detecting a broadcast radio transmission. A communication device may communicate via a powerline communication (PLC) medium by transmitting, via the PLC medium, a signal having at least a first carrier frequency. The communication device may detect a broadcast radio transmission. The communication device may lower a transmission power setting associated with the first carrier frequency from a first power level to a second power level that is lower than the first power level in response to detecting the broadcast radio transmission. The communication device may transmit, via the PLC medium, the signal having at least the first carrier frequency at the second power level during a time period associated with the broadcast radio transmission.
Abstract:
This disclosure provides several mechanisms for adapting transmit power spectral density (PSD). A communications device may adapt the power spectrum utilized at the transmitter based, at least in part, on the channel conditions or PSD constraints associated with the communications medium between the transmitter and a receiver device. Additionally, the transmit PSD may be adapted based, at least in part, on a total power capability associated with a transmitter. Power is allocated to improve throughput and utilization of the communications channel. A transmission profile may be selected based, at least in part, on the notch depth. The transmission profile may be associated with symbol timing parameters. The communications device may maintain a plurality of selectable pulse shapes that are optimized for different notch depths.
Abstract:
A first network device detects at least a first orthogonal code included in a preamble of a network packet received at the first network device from a second network device in an orthogonal frequency division multiplexing (OFDM) communication network. The first network device determines whether the first orthogonal code included in the preamble is associated with an assigned orthogonal code for the first network device. The assigned orthogonal code for the first network device is orthogonal to other assigned orthogonal codes for other network devices in the OFDM communication network. An operational mode of the first network device is changed from a sleep mode to an awake mode in response to determining the first orthogonal code is associated with the assigned orthogonal code for the first network device.
Abstract:
A transmitting device may control digital-to-analog converter (DAC) illumination to optimize signal to noise ratio of a transmission signal. DAC illumination may be adjusted based, at least in part, on analog gain and estimated total transmit power of a particular transmission signal. For each destination, total transmit power may be estimated based on tone map, amplitude map, back-off settings, or other characteristics. The estimated total transmit power is used to determine an appropriate analog gain. Once analog gain and total transmit power are known, fine control of SNR may be achieved by adjusting power level in the digital domain. A digital power control setting is used to scale the amplitude of the digital baseband signal prior to DAC operation. The DAC illumination of the digital baseband signal allows the DAC to operate at an optimized power level within the digital range of the DAC.
Abstract:
A tone map includes physical layer transmission properties for a multi-carrier communications channel. The physical layer transmission properties indicate modulation mode and transmission power to be used on one or more frequencies (i.e. “tones”). The transmission power may be reduced on a first frequency having a high signal-to-noise ratio (SNR) so that performance will improve for a second frequency having a lower SNR. Transmission power may be reduced on a first frequency having an unusably low SNR so that performance will improve on a second frequency. A tone map message is used to efficiently communicate modulation and transmission power adjustments on a per-carrier basis.
Abstract:
Described herein is a system and method for enhanced channel access in existing communication networks. The system comprising: a first enhanced node comprising a first processor, the first processor configured to: transmit a legacy frame header of a physical layer protocol data unit (PPDU), the legacy frame header comprising an indicator indicating that sub-PPDUs will be transmitted during a duration associated with transmission of a legacy PPDU; a second enhanced node comprising a second processor configured to receive the legacy frame header; and a third enhanced node comprising a third processor configured to receive the legacy frame header.
Abstract:
Methods, systems, and devices are described for wireless communication. In one aspect, a method of wireless communication includes receiving, by a first wireless device, compressed beamforming information from each of a plurality of stations, the compressed beamforming information including a feedback signal-to-noise ratio (SNR) value and compressed feedback matrix. The method also includes determining a multi-user signal-to-interference-plus noise ratio (SINR) metric for each of the plurality of stations based at least in part on the received feedback SNR values and the received compressed feedback matrices.