Abstract:
The disclosure provides for a method of interference detection using adaptive energy detection in unlicensed spectrum. The method can include a first modem operating according to a first radio access technology (RAT) receiving a message from a network entity operating according to the first RAT. The first modem sends a detected energy level value to a second modem that is using a second RAT, where the detected energy level value is based at least on the measured energy level of the received message. The second modem adjusts an energy detection threshold based on the detected energy level value received from the first modem. In an aspect, the first modem receives messages from a plurality of network entities operating according to the first RAT, where the detected energy level value is determined based on measured energy levels of the plurality of received messages.
Abstract:
In an unlicensed band, different types of interference may be experienced by user equipments (UEs), and a serving evolved Node B (eNB) may not be aware of the interference types affecting a UE. Therefore, aspects presented herein provide UE assisted interference learning, in which the UE detects an interfering signal and reports information such as the interference level and properties of the interfering signal to a serving eNB. Another aspects presented herein provide for an eNB which receives, from one or more UEs, information indicating properties of each of at least one interfering signals experienced by the UEs, such as interference types affecting the UEs. The eNB further uses the information received from the UE, including the wireless technology type to determine the properties of its downlink transmission and the length of the contention window leading up to its downlink transmission.
Abstract:
Techniques for structured channel rasters for unlicensed spectrum are described. In an aspect, a first channel raster is identified, where the first channel raster is determined from a set of carrier frequencies and is used over an unlicensed or shared spectrum for a wireless wide area network (WWAN). The first channel raster is aligned with a second channel raster that is used over the unlicensed spectrum for a wireless local area network (WLAN). A frequency scanning may be performed by a user equipment (UE) or a network entity over the unlicensed spectrum for the WWAN using the first channel raster. In an aspect, the first channel raster is used over the unlicensed spectrum for the WWAN supported by the user equipment (UE) or the network entity.
Abstract:
In order to cancel any interference due to the second signal (e.g., from a non-serving cell) from a signal received at a UE, without receiving additional control information, the UE blindly estimates parameters associated with decoding the second signal. This may include determining a metric based on sets of symbols associated with the signals in order to determine parameters for the second signal, e.g., the transmission mode, modulation format, and/or spatial scheme of the second signal. The parameters for the signal may be determined based on a comparison of the metric with a threshold. When a spatial scheme and a modulation format is unknown, the blind estimation may include determining a plurality of constellations of possible transmitted modulated symbols associated with a potential spatial scheme and modulation format combination. Interference cancellation can be performed using the constellations and a corresponding probability weight.
Abstract:
A method, a computer program product, and an apparatus are provided. The methods and apparatus for wireless communication include receiving a transmission, the transmission including a plurality of resource element groups (REGs). Aspects of the methods and apparatus include selecting a set of REGs from the plurality of REGs, the set of REGs including at least one REG and determining a traffic to pilot ratio (TPR) for the set of REGs based on the transmission and reference signals in the transmission. Aspects of the methods and apparatus include determining whether the set of REGs includes at least one of control information or data based on the TPR and canceling at least one of control information or data from the set of REGs based on the TPR.
Abstract:
A method, an apparatus, and a computer program product are provided for receiving unicast and multicast-broadcast single frequency network (MBSFN) signals from an eNB in a subframe. The apparatus receives at least one transmission in the subframe, the subframe divided into six partitions and for receiving at least one unicast symbol and a plurality of multicast-broadcast single frequency network (MBSFN) symbols, each of the at least one unicast symbol and the plurality of MBSFN symbols having an associated cyclic prefix (CP). The apparatus further receives at least one unicast signal including the at least one unicast symbol at a first partition of the subframe, and receives at least one MBSFN signal including the plurality of MBSFN symbols respectively at a second partition through sixth partition of the subframe, each MBSFN symbol having the associated CP with a length of at least 33.33 μs.
Abstract:
Certain aspects of the present disclosure provide techniques that may be used to help enable low latency communications between a user equipment (UE) and a base station (BS) using quick uplink channels that enable a reduced transmission time interval (TTI). Additionally, certain aspects of the present disclosure provide techniques for managing communications in a wireless communication system, for example, by using enhanced downlink control channels.
Abstract:
Various aspects described herein relate to communicating using dynamic uplink and downlink transmission time interval (TTI) switching in a wireless network. A notification can be received from a network entity of switching a configurable TTI from downlink communications to uplink communications. The configurable TTI can be one of a plurality of TTIs in a frame structure that allows dynamic switching of configurable TTIs between downlink and uplink communications within a frame. Additionally, uplink communications can be transmitted to the network entity during the configurable TTI based at least in part on the notification.
Abstract:
Certain aspects of the present disclosure provide techniques that may be used to help enable low latency communications between a user equipment (UE) and a base station (BS) using quick uplink channels that enable a reduced transmission time interval (TTI). Additionally, certain aspects of the present disclosure provide techniques for managing communications in a wireless communication system, for example, by using enhanced downlink control channels.
Abstract:
Aspects of the present disclosure relate to wireless communications and, more particularly, to techniques for sharing sensor information. The techniques may be practiced, for example, in a vehicle to vehicle (V2V) environment, where frequency resources are mapped based on vehicle location(s).