Abstract:
A refractive optical system is disposed in an optical path from a display surface to a viewing area and between a projection optical system and the viewing area. A housing receives a display device, the projection optical system, and the refractive optical system, and is provided with an opening. An opening cover has at least partially a curved portion, and is disposed in the opening so that light emitted from the display surface is incident on a convex side of the curved portion. When a light beam that is emitted from a center of the display surface and reaches a center of the viewing area is referred to as a reference light beam, a head-up display satisfies the following condition (1): L2≦L1 (1) whereL1 is a distance from an end on the anterior side of the observer of the refractive optical system to the opening cover, andL2 is a distance from a position at which the reference light beam passes through the refractive optical system to the opening cover.
Abstract:
A display apparatus includes a display unit that projects an image to a light transmissive display member. The display unit is configured to accommodate a display device and a projection optical system that projects the image displayed on the display device to the display member in a housing including an opening through which projected light is output. The projection optical system includes a first reflecting member disposed on a display device side and a second reflecting member disposed on an opening side in an optical path extending from the display device to the opening. A reflection surface of the first reflecting member that reflects the image displayed on the display device has a convex shape of a free-form surface, and a reflection surface of the second reflecting member that projects the image to the display member has a concave shape of a free-form surface.
Abstract:
A display apparatus includes a display unit projecting an image to a light transmissive display member, and the display apparatus forms a virtual image of the image projected by the display unit on an opposite side to a user side. The display unit is configured to accommodate a display device displaying the image and a projection optical system that projects the image displayed on the display device to the display member in a housing. The projection optical system includes a first reflecting member disposed on a display device side and a second reflecting member disposed on an opening side in an optical path extending from the display device. A reflection surface of the first reflecting member reflecting the image displayed on the display device has a convex shape, and a reflection surface of the second reflecting member projecting the image to the display member has a concave shape.
Abstract:
A display apparatus includes a display unit that projects an image to a light transmissive display member. The display apparatus forms a virtual image of the image projected by the display unit. The display unit includes a display device including a display region and a non-display region formed around the display region, a display controller that inputs an image signal to the display device in order to display a predetermined image in the display region, and a projection optical system that projects the image displayed on the display device to the display member. The projection optical system includes a first reflecting member disposed on a display device side and a second reflecting member disposed on a display member side in an optical path extending from the display device to the display member. The display controller is able to change a display position of the image in the display region.
Abstract:
A zoom lens system comprising a positive first lens unit; a negative second lens unit; and subsequent five or six lens units, wherein an aperture diaphragm is provided, intervals between the adjacent lens units vary in zooming, the first lens unit moves in zooming and is fixed in focusing, and the conditions: BF/fW 0.42, and DAIR/Y
Abstract:
An optical system according to the present disclosure includes a first sub-optical system including an aperture stop and a second sub-optical system including a prism. The prism has a first transmission surface located on the reduction side, a second transmission surface located on the magnification side, and at least one reflection surface located on the optical path between the first transmission surface and the second transmission surface. A first reflection surface closest to the intermediate imaging position has a shape with a concave surface facing a direction into which a light ray incident on first the reflection surface is reflected. A curvature shape of the first reflection surface is set such that some of multiple principal rays passing through the reduction conjugate point intersect on the optical path between the first reflection surface and the second transmission surface.
Abstract:
A light flux incident on the light guide body is replicated in a first direction or a second direction by a diffraction structure of an expansion region. When a normal direction with respect to the light guide body of the expansion region is defined as a Z-axis direction, and a tangential plane is defined as an XY plane, the diffraction structure of the expansion region is configured such that a light flux duplicated when the light flux incident on the expansion region is transmitted through the XY plane of the expansion region from a positive direction of the Z axis and a light flux duplicated when the light flux is transmitted through the XY plane of the expansion region from a negative direction of the Z axis are accommodated within a viewing angle at which the image is visually recognizable.
Abstract:
A head-up display of the present disclosure projects a display image on a transparent reflecting member. The head-up display includes: a display device that displays the display image; and a projection optical system that projects the display image displayed on the display device. On an assumption that light reaching a center of a viewpoint region of the observer and corresponding to a center of the virtual image is reference light, the projection optical system includes a prism element that has an incident surface, a reflection surface, and an emitting surface different from the incident surface sequentially in an optical path from the display device. The emitting surface is inclined to the reference light. An inclination amount θ2 of the reference light emitted from the emitting surface with respect to the emitting surface lies in a range of 15°
Abstract:
A head-up display displays an image as a virtual image to an observer and includes: a display device to display the image; and a projection optical system to enlarge and project the image. The projection optical system includes first and second optical elements arranged in this order in an optical path from the image. The first optical element has a diverging action stronger in a horizontal direction than in a vertical direction. The second optical element has a converging action stronger in the horizontal direction than in the vertical direction. A combined power of the first and second optical elements is larger in the vertical direction than in the horizontal direction. The virtual image is inclined by 45 degrees or more with respect a line of sight of the observer to have a lower end close to the observer and an upper end far from the observer.
Abstract:
A head-up display includes a display device, a CPU, and a projection optical system. The display device has pixels including a first-color subordinate pixel and a second-color subordinate pixel, and displays an image. The CPU controls display of the display device. The projection optical system has a refractive optical system, and projects the image displayed on display device on a viewpoint region of an observer. The CPU asymmetrically shifts, between the reference outer side image end and the reference inner side image end with reference to a center, a pixel of an image formed by the second-color subordinate pixel relative to an image formed by the first-color subordinate pixel.