Abstract:
A method of automatically performing a routine to check the operational state of a mass spectrometer is disclosed wherein the method is performed automatically as a start-up routine upon switching ON the mass spectrometer. The method comprises automatically generating a vacuum within one or more vacuum chambers of a mass spectrometer and automatically generating first ions using an internal ion source, wherein the internal ion source is located within a vacuum chamber of the mass spectrometer or is located within a chamber downstream from an atmospheric pressure interface, and detecting at least some of the first ions or second ions derived from the first ions. The method further comprises automatically determining whether or not the mass spectrometer is in a correct operational state.
Abstract:
A non-linear ion guide is disclosed comprising a plurality of electrodes. An ion guiding region is arranged between the electrodes, and the ion guiding region curves at least in a first direction. A DC voltage is applied to at least some of the electrodes in order to form a DC potential well which acts to confine ions within the ion guiding region in the first direction.
Abstract:
Ions having a restricted range of mass to charge ratios are transmitted to the acceleration region of a Time of Flight mass analyser. A control system applies a first extraction pulse to an acceleration electrode in order to accelerate a first group of ions into the time of flight region at a first time T1, wherein ions having the lowest mass to charge ratio in the first group of ions have a time of flight ΔT1min through the time of flight region and ions having the highest mass to charge ratio in the first group of ions have a time of flight ΔT1max through the time of flight region. The control system applies a second extraction pulse to the acceleration electrode at a subsequent second time T2, wherein ΔT1max−ΔT1min≦T2−T1
Abstract:
A mass spectrometer is disclosed comprising two vacuum chambers maintained at different pressures. The two vacuum chambers are interconnected by a differential pumping aperture. The effective area of the opening between the two vacuum chambers may be varied by rotating a disk having an aperture in front of the differential pumping aperture so as to vary the gas flow rate through the opening and between the two chambers.
Abstract:
An ion guide or mass analyser is disclosed comprising a plurality of electrodes having apertures through which ions are transmitted in use. A pseudo-potential barrier is created at the exit of the ion guide or mass analyser. The amplitude or depth of the pseudo-potential barrier is inversely proportional to the mass to charge ratio of an ion. One or more transient DC voltages are applied to the electrodes of the ion guide or mass analyser in order to urge ions along the length of the ion guides or mass analyser. The amplitude of the transient DC voltage applied to the electrode may be increased with time so that ions are caused to be emitted from the ion guide or mass analyser in reverse order of their mass to charge ratio.
Abstract:
Apparatus for a mass spectrometer is disclosed comprising an ion source, a heater for heating a gas flow to the ion source, a temperature sensor for monitoring the temperature of the heater, and a control system. The control system is arranged and adapted to determine a flow rate of the gas flow by monitoring the power supplied to the heater and the temperature of the heater.
Abstract:
An ion guide or mass analyser is disclosed comprising a plurality of electrodes having apertures through which ions are transmitted in use. A pseudo-potential barrier is created at the exit of the ion guide or mass analyser. The amplitude or depth of the pseudo-potential barrier is inversely proportional to the mass to charge ratio of an ion. One or more transient DC voltages are applied to the electrodes of the ion guide or mass analyser in order to urge ions along the length of the ion guides or mass analyser. The amplitude of the transient DC voltage applied to the electrode may be increased with time so that ions are caused to be emitted from the ion guide or mass analyser in reverse order of their mass to charge ratio.
Abstract:
A miniature mass spectrometer is disclosed comprising an atmospheric pressure ionisation source, a first vacuum chamber having an atmospheric pressure sampling orifice or capillary, a second vacuum chamber located downstream of the first vacuum chamber and a third vacuum chamber located downstream of the second vacuum chamber. An ion detector is located in the third vacuum chamber. A first RF ion guide is located within the first vacuum chamber and a second RF ion guide is located within the second vacuum chamber. The ion path length from the atmospheric pressure sampling orifice or capillary to an ion detecting surface of the ion detector is ≦400 mm. The product of the pressure P1 in the vicinity of the first RF ion guide and the length L1 of the first RF ion guide is in the range 10-100 mbar-cm and the product of the pressure P2 in the vicinity of the second RF ion guide and the length L2 of the second RF ion guide is in the range 0.05-0.3 mbar-cm.
Abstract:
A miniature mass spectrometer is disclosed comprising an atmospheric pressure ionisation source and a first vacuum chamber having an atmospheric pressure sampling orifice or capillary, a second vacuum chamber located downstream of the first vacuum chamber and a third vacuum chamber located downstream of the second vacuum chamber. An ion detector is located in the third vacuum chamber. A first RF ion guide is located within the first vacuum chamber and a second RF ion guide is located within the second vacuum chamber. The ion path length from the atmospheric pressure sampling orifice or capillary to an ion detecting surface of the ion detector is ≦400 mm. The mass spectrometer further comprises a tandem quadrupole mass analyser, a 3D ion trap mass analyser, a 2D or linear ion trap mass analyser, a Time of Flight mass analyser, a quadrupole-Time of Flight mass analyser or an electrostatic mass analyser arranged in the third vacuum chamber. The product of the pressure P1 in the vicinity of the first RF ion guide and the length L1 of the first RF ion guide is in the range 10-100 mbar-cm and the product of the pressure P2 in the vicinity of the second RF ion guide and the length L2 of the second RF ion guide is in the range 0.05-0.3 mbar-cm.
Abstract:
A RF only quadrupole rod set mass filter or mass analyser and a linear quadrupole ion trap with axial ejection are disclosed comprising a first pair of rod electrodes, a second pair of rod electrodes and an energy filter. The first pair of rod electrodes is longer than the second pair of rod electrodes. Ions having desired mass to charge ratios experience fringing fields at an exit region which results in the ions possessing sufficient axial kinetic energy to be transmitted by the energy filter. Other ions possess insufficient axial kinetic energy to be transmitted by the energy filter and are attenuated.