Abstract:
An enhanced RRC re-establishment procedure on secondary base station (SeNB) is proposed. A UE with dual connectivity is connected to both a master base station (MeNB) and a secondary eNB (SeNB). The UE performs radio link monitoring (RLM) and radio link failure (RLF) procedures over PCELL served by the MeNB. Once RLF is detected, the UE performs RRC connection reestablishment with a selected cell. From SeNB perspective, the SeNB triggers proactive fetching of UE context from the MeNB to ensure a successful reestablishment. From MeNB perspective, the MeNB provides preference information to the UE for selecting a suitable cell for reestablishment. From UE perspective, the UE considers its mobility state during cell selection such that smallcells are skipped for reestablishment when the UE has high mobility.
Abstract:
Methods and apparatus are provided for UE-triggered handover and early preparation with coexistence of the network-triggered handover. In one novel aspect, the UE is configured early measurement report configuration, receives an early handover command from the serving base station with a handover candidate cell list, monitors handover triggering conditions for each candidate cell on the handover candidate cell list based on a UE-triggered handover configuration and performs the UE-triggered handover to a candidate cell when the corresponding triggering condition is met for the candidate cell. In one embodiment, the UE receives a network-triggered handover command to a target cell, suspends the UE-triggered handover configuration and performs the network-triggered handover to the target cell. The UE discards the UE-triggered handover configuration upon success of the network-triggered handover and resumes the UE-triggered handover configuration upon failure of the network-triggered handover.
Abstract:
A User Equipment (UE) including a wireless transceiver and a controller is provided. The wireless transceiver performs wireless transmission and reception to and from a first service network and a second service network. The controller receives a Radio Resource Control (RRC) message comprising a measurement configuration for SFN (System Frame Number) and Frame Timing Difference (SFTD) from the first service network via the wireless transceiver, performs first SFTD measurements between a Primary Cell (PCell) of the first service network and neighbor cells of the second service network via the wireless transceiver in response to the measurement configuration for SFTD indicating the neighbor cells, and sends a result of the first SFTD measurements to the first service network via the wireless transceiver.
Abstract:
Various examples and schemes pertaining to NB-IoT physical random access channel (PRACH) resource partitioning and multiple grants in random access response (RAR) for early data transmission (EDT are described. A network node schedules multiple grants for EDT during a random access (RA) procedure with a user equipment (UE). The network node transmits to the UE a message indicating the multiple grants mapped to a maximum broadcast transport block size (TBS) configured for each of one or more preamble resource of a plurality of preamble resources. The UE calculates a TBS that fits an uplink (UL) data packet of the UE. The UE selects one or more PRACH resources for EDT for the TBS based on a wireless communication coverage of the UE by the network node. The UE transmits to the network node in the RA procedure a first message (Msg1) indicating the selected one or more PRACH resources.
Abstract:
Various examples and schemes pertaining to narrowband reference signal (NRS) transmission on non-anchor carriers in narrowband IoT (NB-IoT) are described. A wireless network indicates a subset of one or more paging groups of user equipment (UEs) among a plurality of UEs in an NB-IoT cell. The wireless network then transmits one or more narrowband reference signals (NRSs) in one or more paging frames or one or more paging occasions associated with the subset of one or more paging groups.
Abstract:
Concepts and examples pertaining to efficient coding switching and modem resource utilization in wireless communication systems are described. A processor of a modem of a user equipment (UE), configured with at least a first-capacity decoder and at least a second-capacity decoder, receives a common virtual carrier (CVC), a dedicated virtual carrier (DVC), or both. The CVC contains common information shared by multiple UEs, control information for the UE, and/or data information related to first data destined for the UE. The DVC contains control information for the UE, the first data, or a combination thereof. The first-capacity decoder decodes data of a small size up to a low data rate. The second-capacity decoder decodes data of a large size up to a high data rate. The processor determines whether to decode the first data using the first-capacity decoder or the second-capacity decoder based on the data information in the CVC.
Abstract:
Various examples and schemes pertaining to NB-IoT physical random access channel (PRACH) resource partitioning and multiple grants in random access response (RAR) for early data transmission (EDT are described. A network node schedules multiple grants for EDT during a random access (RA) procedure with a user equipment (UE). The network node transmits to the UE a message indicating the multiple grants mapped to a maximum broadcast transport block size (TBS) configured for each of one or more preamble resource of a plurality of preamble resources. The UE calculates a TBS that fits an uplink (UL) data packet of the UE. The UE selects one or more PRACH resources for EDT for the TBS based on a wireless communication coverage of the UE by the network node. The UE transmits to the network node in the RA procedure a first message (Msg1) indicating the selected one or more PRACH resources.
Abstract:
Various examples and schemes pertaining to user equipment (UE) group wake-up signal (WUS) in narrowband IoT (NB-IoT) are described. A wireless network indicates to a plurality of user equipment (UEs) a paging configuration of a UE-group wake-up signal (WUS) for one or more groups of UEs among the plurality of UEs in an NB-IoT cell. The paging configuration may be related to a discontinuous reception (DRX) cycle and a value related to UE identification of each UE in the one or more groups of UEs. The wireless network also transmits the UE-group WUS to the one or more groups of UEs.
Abstract:
Various examples and schemes pertaining machine-to-machine (M2M) semi-persistent scheduling (SPS) in wireless communications are described. A user equipment (UE) receives a control signal from a network node of a wireless network. The UE applies, based on the control signal, an SPS configuration such that the UE enters one of one or more low-power modes between two adjacent SPS occasions.
Abstract:
A method of user equipment (UE) autonomous release RRC connection to reduce power consumption and signaling overhead is proposed. UEs sending small amount of data with long period, e.g., Machine-Type Communication (MTC) and Narrow-Band Internet of Things (NB-IoT) UEs, are allowed to be released autonomously after sending a given amount of data with corresponding request and configuration procedures. In one embodiment, UE sends an RRC connection request with UE autonomous release request, and receives an RRC setup message with UE autonomous release information. UE then transmits an RRC setup complete message with piggybacked uplink data. UE autonomously releases to Idle state upon expiry of an inactivity timer.