Abstract:
A light emitting unit includes at least one electrode member having high thermal conductivity and low resistance, and one or more flip-chip-type light emitting device of which an anode electrode side or a cathode electrode side is connected to the electrode member, and wherein the electrode member extends in a longitudinal direction thereof, and heat generated in the light emitting device is to be released along the longitudinal direction of the electrode member.
Abstract:
This electronic endoscope apparatus having an insertable part inserted into an observation object and provided with a solid state imaging device imaging the observed image, an image forming optical system forming the observed image on said solid state imaging device and a displaying apparatus displaying an electric signal transmitted from said solid state imaging device, characterized by having a plurality of 1-field memories which can electrically invert the observed image obtained by the image forming optical system.
Abstract:
An endoscopic apparatus includes an endoscope body and a drive unit for driving the endoscope body. The endoscope body has a connector which is connected to a socket of the drive unit. The socket is provided with an electrical socket unit, an optical socket unit and a fluid socket unit which have central axes parallel to one another, respectively. The electrical socket unit is supported by support members to be movable in a direction perpendicular to the central axis of the unit. The connector has an electrical connector unit, an optical connector unit and a fluid connector unit which are adapted to be connected to the corresponding socket units. When the connector is connected to the socket, the electrical socket unit is guided by a guide mechanism to a position wherein it is located coaxial with the electrical connector unit.
Abstract:
A plurality of images are used as input images. On the basis of a degree of similarity to an input image group and an evaluation of the quantity of edges of an overall image, a new image is generated. An image processing method may comprise calculating a specified color characteristic degree indicating a degree of similarity between a pixel color of a generated image predicted from the input image group and a specified color that has been specified beforehand, and for, on the basis of the specified color characteristic degree, modifying a weight corresponding to the edge quantity of each pixel within the generated image, and generating an image wherein the manner of reproduction of edges of areas of the specified color differs from other regions.
Abstract:
The present invention is an image processing device which has tone mapping curve generation means for local tone correction, which generates a tone mapping curve for local tone correction using the luminance of peripheral areas for each pixel of interest within an input image; prediction means which predicts the overall luminance and/or the contrast of the image after the local tone correction on the basis of the average luminance of partial areas into which the input image has been partitioned; tone mapping curve generation means for global tone correction, which generates a tone mapping curve for global tone correction on the basis of the prediction; and correction means which integrates the tone mapping curve for local tone correction and the tone mapping curve for global tone correction so as to simultaneously execute the local tone correction and the global tone correction.
Abstract:
The present invention is directed to a noise reduction method, comprising: for each of multi-layer regions each containing a pixel of interest and having a successively reducing area, calculating a pixel statistic value of pixels in that region; for each of successive layers, correcting the pixel statistic value for a region at a current layer using a corrected pixel statistic value for a region at a preceding layer having a greater area than that of the region at the current layer; and correcting the pixel of interest using a corrected pixel statistic value for a region with a smallest area.
Abstract:
An image-processing method determines the interpolation reliability for interpolated pixels in a progressive image, generated by interpolation of an interlaced image, by combining at least any of a first interpolation reliability determined based on the absolute value of the difference between pixels in an upper line and pixels in a lower line used to calculate the value of the interpolated pixels, a second interpolation reliability determined based on the width of the region used to determine the pixels in the upper line and the pixels in the lower line used to calculate the value of the interpolated pixels, and a third interpolation reliability determined by combining the change in luminance for the upper line and the change in luminance for the lower line within the region.
Abstract:
In super-resolution processing in which a plurality of low resolution images are synthesized to generate a high resolution image, a high-quality high-resolution image is to be generated with suppression of the noise ascribable to motion estimation error. Motion estimating means 11 estimates motion of pixels between a basis image selected out of plural low resolution images and remaining reference images, and outputs a result of motion estimation. Motion estimation reliability evaluating means 12 evaluates reliability of the result of motion estimation output from the motion estimating means 11, based on such as analogy in luminance of pixels, correlated by the results of the motion estimation, and outputs a motion estimation reliability value indicating the degree of reliability. High resolution image estimating means 16 synthesizes the respective pixels of the input low resolution images with weighting conforming to the motion estimation reliability value output from the motion estimation reliability evaluating means 12 to generate a high resolution image.
Abstract:
An image processing device (100) includes a gradation correction value acquiring unit (12) that acquires a gradation correction value representing a ratio of a luminance component of an input image and a luminance component of an output image, a chroma analyzing unit (13) that calculates a chroma correction value, in which the total sum of degrees of chroma discrepancy between an analysis image equal to or different from the input image and a corrected image obtained by correcting a luminance component of the analysis image on the basis of one or more gradation correction values is the minimum, in correspondence with the gradation correction value, and an image output unit (14) that outputs as the output image an image obtained by correcting the input image received by the image input unit (11) on the basis of the gradation correction value acquired by the gradation correction value acquiring unit (12) and the chroma correction value correlated with the gradation correction value.
Abstract:
A light source apparatus includes a first light-emitting element to generate an illumination light with a first light emission intensity to be applied to a subject, and a second light-emitting element to generate an illumination light with a second light emission intensity, including at least light with a wavelength different from the illumination light generated from the first light-emitting element. The first light-emitting element and second light-emitting element are arranged, so that the peaks of the first emission intensity and second emission intensity become identical.