Abstract:
Communications apparatus includes first and second radio modules and an antenna array coupled to the first and the second radio modules and includes multiple antennas. When the first and the second radio modules operate at the same time, the first radio module negotiates with a first communications device an amount of antenna(s) to be used by a first message, so that the first radio module operates with the amount of the antenna(s) and second radio module operates with at least one of the remaining antenna(s).
Abstract:
A method for performing seamless transmission control for an electronic device and an associated apparatus are provided, where the method includes the steps of: sending a request frame carrying a fragment identification (ID) to trigger a responder in a wireless network system to initiate retransmission corresponding to the fragment ID, wherein the fragment ID indicates beginning of a remaining portion within a plurality of fragments of data being sent from the responder to the electronic device; and receiving at least one response frame sent from the responder, for utilizing the remaining portion within the plurality of fragments of the data, wherein the remaining portion within the plurality of fragments of the data is obtained from the at least one response frame.
Abstract:
A method for frame rate control in a transmitter of a wireless communications system is disclosed. The method comprises generating a frame and a first information corresponding to a first expiration time of the frame by a frame generating module; handling the frame according to the first expiration time by the driver module; and informing the frame generating module an adjusting information according to a first pre-determined rule by the driver module.
Abstract:
A wireless communicating method includes: performing one resource unit allocation upon a channel; and allocating a first resource unit and a second resource unit in said one resource unit allocation to a station, wherein the first resource unit is different from the second resource unit. By using the wireless communication method, throughput rate can be improved.
Abstract:
Presented systems and methods facilitate efficient and effective communication link adaptation. In one embodiment, a system comprises: a first communication device configured to forward link adaptation information, and a second communication component configured to receive the link adaptation information. The system is part of a wireless local area network (WLAN). The link adaptation information can include Modulation and Coding Scheme (MCS) Feed Back (MFB) related information in a communication frame. The communication frame can include a first field and a second field. The first field indicates the information is being forwarded as unsolicited MFB information or is associated with a solicitation request for the MFB information. The second first field indicates whether the information is MFB information or a request for MFB information.
Abstract:
A method of STA-initiated uplink (UL) aggregation is proposed in a wireless communication system. Under the STA-initiated UL aggregation, an STA can gain access to the medium through contention and after winning the TXOP, it passes the TXOP ownership to its AP to allow it to trigger UL MU transmission. Thus, the AP has increased chance of utilizing the medium while maintains fairness to both legacy APs and STAs. In addition, once AP takes over ownership of the TXOP, if it detects idle secondary channels, it can enable UL aggregation over the idle secondary channels, thereby fully utilizing the entire system bandwidth.
Abstract:
A method of improved allocation of uplink resources in an OFDMA network is proposed. A wireless communications station (an AP) reserves both dedicated resource and contention resource for uplink OFDMA operation for a list of communications devices (STAs). The AP can switch between random access operation and non-random access operation without the need for any special protection mechanisms. In the event of an increase in uplink OFDMA frame collisions the AP can switch from random operation to non-random operation to reduce the number of collisions. In the event of a decrease in uplink OFDMA frame collisions the AP can switch from non-random operation to random operation to reduce required AP processing. The AP can also dynamically control a STA access probability to reduce the number of collisions by reducing the number of uplink OFDMA frames each STA transmits.
Abstract:
A method of improved allocation of uplink resources in an OFDMA network is proposed. A wireless communications station (an AP) reserves both dedicated resource and contention resource for uplink OFDMA operation for a list of communications devices (STAs). The AP can switch between random access operation and non-random access operation without the need for any special protection mechanisms. In the event of an increase in uplink OFDMA frame collisions the AP can switch from random operation to non-random operation to reduce the number of collisions. In the event of a decrease in uplink OFDMA frame collisions the AP can switch from non-random operation to random operation to reduce required AP processing. The AP can also dynamically control a STA access probability to reduce the number of collisions by reducing the number of uplink OFDMA frames each STA transmits.
Abstract:
A method of fast link adaptation for Bluetooth long-range wireless networks is provided. A novel rate indication (RI) field is incorporated in a data packet to enable auto detection of rate adaptation at the receiver side. The data packet comprises a preamble, a first packet portion including the RI field, and a second packet portion including the PDU. The first packet portion is encoded with a first rate while the second packet portion is encoded with a second rate indicated by the RI field. The transmitting device raise/lower the encoding rate when the link quality is good/poor. The receiving device can provide recommended rate or link quality feedback information via an LMP message to help the transmitting device making rate adaptation decision. The transmitter can unilaterally decide the data rate for the second packet portion without receiver recommendation.
Abstract:
A method of sharing credential in a wireless communication system comprising a first user equipment, a second communication device and a network, includes transmitting a temporal credential and a credential custody request, from the first communication device, to the network; transmitting first custody information, by the network, to the first communication device; transmitting a credential acquiring request and second custody information, by the second communication device, to the network; and determining whether to transmit the temporal credential to the second communication device according to the second custody information.