Abstract:
A method for adaptively allocating resources of an uplink control channel according to a system situation is disclosed. If a base station (BS) recognizes the system situation, establishes control information for resource allocation, and transmits the control information to a mobile station (MS), the mobile station (MS) allocates resources for transmitting uplink control information using a specific block or a specific resource distribution method according to the corresponding control information. The system situation may be changed according to the number of users contained in the BS's coverage or the usage of a multi-antenna. The variation of the system situation is actively reflected so that the uplink channel resources can be effectively used.
Abstract:
A method and terminal apparatus are described for performing channel interleaving at a terminal in a multiple-input multiple-output (MIMO) wireless communication system. A number of columns C of an interleaver matrix are assigned as a number of symbols for transmitting data per subframe (Nsymb). A number of rows R of the interleaver matrix is defined as H · L · log 2 Q C , where H is a number of modulation symbols per layer, L is a number of layers and Q is a modulation order. Input vector sequences are written into entries of the interleaver matrix, row by row. Each of the entries has a size of L·log2Q bits. Output bit sequences are generated by reading out the entries of the interleaver matrix, column by column. The output bit sequences are modulated by a unit of log2Q bits, to generate modulation symbols. The modulation symbols are mapped to the L layers, and transmitted by using the L layers.
Abstract:
According to one embodiment, a user equipment for use in a mobile communication system is configured to: receive control information including a first field and a second field via a control channel, the first field indicating one of N (N≧2) resource block group (RBG) sets and the second field including a bitmap, wherein each bit of the bitmap is used to indicate whether a corresponding resource block (RB) in the indicated one of the N RBG sets is allocated; interpret the first field and the second field for resource allocation in the control information; and receive data using the control information. An RBG set n (0≦n
Abstract translation:根据一个实施例,用于移动通信系统的用户设备被配置为:经由控制信道接收包括第一场和第二场的控制信息,所述第一场指示N(N≥2)个资源块组 (RBG)集合,并且所述第二字段包括位图,其中所述位图的每个位用于指示是否分配所述N个RBG集合中的所指示的一个中的对应资源块(RB) 解释控制信息中的资源分配的第一场和第二场; 并使用控制信息接收数据。 RBG集合n(0≦̸ n
Abstract:
According to one embodiment, a user equipment for use in a mobile communication system is configured to: receive control information including a first field and a second field via a control channel, the first field indicating one of N (N≧2) resource block group (RBG) sets and the second field including a bitmap, wherein each bit of the bitmap is used to indicate whether a corresponding resource block (RB) in the indicated one of the N RBG sets is allocated; interpret the first field and the second field for resource allocation in the control information; and receive data using the control information. An RBG set n (0≦n
Abstract translation:根据一个实施例,用于移动通信系统的用户设备被配置为:经由控制信道接收包括第一场和第二场的控制信息,所述第一场指示N(N≥2)个资源块组 (RBG)集合,并且所述第二字段包括位图,其中所述位图的每个位用于指示是否分配所述N个RBG集合中的所指示的一个中的对应资源块(RB) 解释控制信息中的资源分配的第一场和第二场; 并使用控制信息接收数据。 RBG集合n(0≦̸ n
Abstract:
A method for performing, by a first device, channel coding of data to be transmitted to a second device, the method includes: determining a size of a transport block for the data; attaching a first cyclic redundancy check (CRC) code to the transport block having the determined size to produce a first CRC-attached transport block; and segmenting the first CRC-attached transport block into multiple code blocks, wherein the size of the transport block is determined from among a plurality of predetermined transport block sizes such that the multiple code blocks have a same size as each other.
Abstract:
A method and device for transmitting an uplink signal in a wireless communication system is provided. A user equipment transmits a physical uplink shared channel (PUSCH) on a SRS subframe for a first serving cell to a base station if a SRS transmission on the SRS subframe for the first serving cell is overlapped with an uplink transmission for a second serving cell. The PUSCH is transmitted on remaining orthogonal frequency division multiplexing (OFDM) symbols in the SRS subframe except a single OFDM symbol reserved for the SRS transmission regardless of whether a SRS is transmitted on the single OFDM symbol or not.
Abstract:
According to one embodiment, a user equipment for use in a mobile communication system is configured to; receive control information including a first field and a second field via a control channel, the first field indicating one of N (N≧2) resource block group (RBG) sets and the second field including a bitmap, wherein each bit of the bitmap is used to indicate whether a corresponding resource block (RB) in the indicated one of the N RBG sets is allocated; interpret the first field and the second field for resource allocation in the control information; and receive data using the control information. An RBG set n (0≦n
Abstract:
According to one embodiment of the present invention, a method for reporting power headroom in a user equipment of a multi-carrier system, includes receiving a physical downlink control channel (PDCCH) signal comprising uplink resource allocation information from a base station; transmitting at least one of a physical uplink shared channel (PUSCH) signal and a physical uplink control channel (PUCCH) signal to the base station in a predetermined subframe based on the uplink resource allocation information in accordance with a transmission mode; calculating one or more power headroom values for the predetermined subframe in accordance with the transmission mode; and transmitting a report message comprising the one or more power headroom values to the base station, wherein the user equipment reports its first and second type power headroom values when operating in transmission mode A, or reports its first type power headroom value when operating in transmission mode B.
Abstract:
A method and user equipment for performing an uplink transmission in a wireless communication system, are discussed. The method includes allocating transmission power to a first uplink transmission and a second uplink transmission when a total power in a transmission period including at least one or more OFDM symbols exceeds maximum power, wherein each of the first and second uplink transmissions is one of physical uplink shared channel (PUSCH) transmission, physical uplink control channel (PUCCH) transmission, physical random access channel (PRACH) transmission and sounding reference signal (SRS) transmission; and performing the first and second uplink transmissions according to the allocated transmission power, wherein the allocation of the transmission power is performed according to priority information.
Abstract:
Provided are a method and an apparatus for a user equipment, which is allocated a plurality of serving cells, receiving acknowledgement/negative acknowledgement (ACK/NACK) in a wireless communication system. The method comprises: transmitting uplink data through a physical uplink shared channel (PUSCH); and receiving ACK/NACK with respect to the uplink through a physical hybrid-ARQ indicator channel (PHICH), wherein a serving cell that receives the ACK/NACK is selected from one or more serving cells, which the user equipment monitors to detect an uplink grant that schedules the PUSCH.