Abstract:
A method of harvesting energy from the environment includes providing an energy harvesting device. The energy harvesting device includes a MEMS composite transducer. The MEMS composite transducer includes a substrate. Portions of the substrate define an outer boundary of a cavity. A MEMS transducing member includes a beam having a first end and a second end. The first end is anchored to the substrate and the second end cantilevers over the cavity. A compliant membrane is positioned in contact with the MEMS transducing member. A first portion of the compliant membrane covers the MEMS transducing member. A second portion of the compliant membrane is anchored to the substrate. The energy harvesting device is configured so that the compliant membrane is set into oscillation by excitations produced external to the energy harvesting device. The MEMS transducing member is caused to move into and out of the cavity by the oscillating compliant membrane. The motion of the MEMS transducing member is converted into an electrical signal.
Abstract:
Operating an ultrasonic transmitter and receiver includes providing a MEMS composite transducer. The MEMS composite transducer includes a substrate. Portions of the substrate define an outer boundary of a cavity. A first MEMS transducing member includes a first size. A first portion of the first MEMS transducing member is anchored to the substrate. A second portion of the first MEMS transducing member extends over at least a portion of the cavity and is free to move relative to the cavity. A second MEMS transducing member includes a second size smaller than the first size of the first MEMS transducing member. A first portion of the second MEMS transducing member is anchored to the substrate. A second portion of the second MEMS transducing member extends over at least a portion of the cavity and is free to move relative to the cavity. A compliant membrane is positioned in contact with the first and second MEMS transducing members. A first portion of the compliant membrane covers the first and second MEMS transducing members. A second portion of the compliant membrane is anchored to the substrate. Electrical pulses are sent to the first MEMS transducing member which causes the first MEMS transducing member and the compliant membrane to vibrate. The vibrations of the first MEMS transducing member and the compliant membrane are transmitted to an object. Echo signals are received from the object. The received echo signals are converted into electrical signals by the second MEMS transducing member.
Abstract:
A digital micromirror device with an optimized beam dimple formed over the via2 to provide process margin by increasing the clearance between the beam and the address electrode, thus reducing shorting between the two. This approach assures that when the beam tilts, it will land on its tips prior to making contact between the beam and address electrode, which are at different potentials. Beam dimple optimization is controlled by the characteristics of the via2 located on the lower metal-3 layer of the device.
Abstract:
A system and method of providing a micromirror pixel 400 that is highly resistant to bright failure states. The micromirror 400 uses an asymmetric yoke 402 to ensure the mirror is only attracted to the address electrode in one rotation direction. The landing mechanism on the other side of the torsion binge axis also is altered to allow the pixel to over rotate in the “off” direction. The over rotation ensures that light reflected by the mirror when in the off direction will miss the projection lens pupil, allowing the corresponding pixel to remain dark in both an operational and failed state.
Abstract:
An improved DMD type spatial light modulator having an array of pixels (18). The pixels (18) are of the “hidden hinge” design, each pixel having a mirror (30) supported over a hinged yoke (32). Addressing electrodes (26, 28) on an underlying metallization layer and addressing electrodes (50, 52) at the yoke level provide electrostatic forces that cause the mirrors to tilt and then to return to their flat state. The pixels (18) are designed to provide increased clearance between the leading edge of the yoke (32) and the underlying metallization layer when the mirrors (30) are tilted. Various features of the improved pixel (18) also improve the contrast ratio of images generated by the DMD.
Abstract:
A method of harvesting energy from the environment includes providing an energy harvesting device. The energy harvesting device includes a MEMS composite transducer. The MEMS composite transducer includes a substrate. Portions of the substrate define an outer boundary of a cavity. A MEMS transducing member includes a beam having a first end and a second end. The first end is anchored to the substrate and the second end cantilevers over the cavity. A compliant membrane is positioned in contact with the MEMS transducing member. A first portion of the compliant membrane covers the MEMS transducing member. A second portion of the compliant membrane is anchored to the substrate. The energy harvesting device is configured so that the compliant membrane is set into oscillation by excitations produced external to the energy harvesting device. The MEMS transducing member is caused to move into and out of the cavity by the oscillating compliant membrane. The motion of the MEMS transducing member is converted into an electrical signal.
Abstract:
A liquid dispenser includes a substrate. A first portion of the substrate defines a liquid dispensing channel including an outlet opening. A second portion of the substrate defines an outer boundary of a cavity. Other portions of the substrate define a liquid supply channel and a liquid return channel. A liquid supply provides a continuous flow of liquid from the liquid supply through the liquid supply channel through the liquid dispensing channel through the liquid return channel and back to the liquid supply. A diverter member is selectively actuatable to divert a portion of the liquid flowing through the liquid dispensing channel through outlet opening of the liquid dispensing channel. The diverter member includes a MEMS transducing member anchored to the substrate. A compliant membrane is positioned in contact with the MEMS transducing member.
Abstract:
A liquid dispenser includes a substrate. A first portion of the substrate defines a liquid dispensing channel including an outlet opening. A second portion of the substrate defines a liquid supply channel and a liquid return channel. A liquid supply provides a continuous flow of liquid from the liquid supply through the liquid supply channel through the liquid dispensing channel through the liquid return channel and back to the liquid supply. A diverter member, positioned on a wall of the liquid dispensing channel that includes the outlet opening, is selectively actuatable to divert a portion of the liquid flowing through the liquid dispensing channel through outlet opening of the liquid dispensing channel. The diverter member includes a MEMS transducing member anchored to the wall of the liquid dispensing channel. A compliant membrane is positioned in contact with the MEMS transducing member.
Abstract:
A method for making a microfluidic device, the method includes providing at least one inorganic layer on a substrate; applying an alkoxysilane material containing a primary or secondary amine on the at least one inorganic layer; baking the applied alkoxysilane material at a temperature greater than 130 degrees C.; applying an epoxy material to form an epoxy layer, wherein the applied alkoxysilane material is disposed at an interface between the epoxy layer and the at least one inorganic layer; and patterning the epoxy layer to provide a wall for defining a location for a fluid in the microfluidic device.
Abstract:
A microfluidic device includes a substrate; at least one inorganic layer provided on the substrate; a patterned epoxy layer formed over the at least one inorganic layer, the patterned epoxy layer including a wall that defines a location for a fluid in the microfluidic device; and an alkoxysilane material containing a primary or secondary amine for promoting adhesion between the at least one inorganic layer and the patterned epoxy layer.