Out-of-band communication channel for subcarrier-based optical communication systems

    公开(公告)号:US11296812B2

    公开(公告)日:2022-04-05

    申请号:US16893415

    申请日:2020-06-04

    Inventor: Steven J. Hand

    Abstract: In an example method, an edge transceiver receives a first message from a hub transceiver over a first communications channel of an optical communications network, including an indication of available network resources on the optical communications network. The edge transceiver transmits, over a second communications channel of the optical communications network, a second message to the hub transceiver, including an indication of a subset of the available network resources selected by the edge transceiver. The edge transceiver receives, from the hub transceiver, a third message acknowledging receipt of a selection by the edge transceiver and a fourth message confirming an assignment of the selected subset of the available network resources to the edge transceiver. The edge transceiver transmits, using the selected subset of the available network resources, data via the hub transceiver.

    Dynamically switching queueing schemes for network switches

    公开(公告)号:US11290393B2

    公开(公告)日:2022-03-29

    申请号:US16732041

    申请日:2019-12-31

    Inventor: Steven J. Hand

    Abstract: An example system includes a plurality of network nodes, each including one or more respective first transceivers configured to transmit data according to a first maximum throughput, and one or more respective second transceivers configured to transmit data according to a second maximum throughput that is less than the first maximum throughput. A first network node is configured to transmit, using a respective one of the first transceivers, first data including a plurality of optical subcarriers to two or more second network nodes according to the first maximum throughput, each optical subcarrier being associated with a different one of the two more other network nodes. The two or more second network nodes are configured to receive, using respective ones of the second transceivers, the first data from the first network node.

    Frequency division multiple access optical subcarriers

    公开(公告)号:US11075694B2

    公开(公告)日:2021-07-27

    申请号:US16578393

    申请日:2019-09-22

    Abstract: A network or system in which a hub or primary node may communicate with a plurality of leaf or secondary nodes. The hub node may operate or have a capacity greater than that of the leaf nodes. Accordingly, relatively inexpensive leaf nodes may be deployed to receive data carrying optical signals from, and supply data carrying optical signals to, the hub node. One or more connections may couple each leaf node to the hub node, whereby each connection may include one or more spans or segments of optical fibers, optical amplifiers, optical splitters/combiners, and optical add/drop multiplexer, for example. Optical subcarriers may be transmitted over such connections, each carrying a data stream. The subcarriers may be generated by a combination of a laser and a modulator, such that multiple lasers and modulators are not required, and costs may be reduced. As the bandwidth or capacity requirements of the leaf nodes change, the number of subcarriers, and thus the amount of data provided to each node, may be changed accordingly. Each subcarrier within a dedicated group of subcarriers may carry OAM or control channel information to a corresponding leaf node, and such information may be used by the leaf node to configure the leaf node to have a desired bandwidth or capacity.

    OUT-OF-BAND COMMUNICATION CHANNEL FOR SUBCARRIER-BASED OPTICAL COMMUNICATION SYSTEMS

    公开(公告)号:US20210126729A1

    公开(公告)日:2021-04-29

    申请号:US16893365

    申请日:2020-06-04

    Inventor: Steven J. Hand

    Abstract: An example system includes an optical gateway, plurality of hub transceivers, and a plurality of edge transceivers. The optical gateway is operable to receive a plurality of signals from an optical communications network at a plurality of ports of the optical gateway, where each port of the optical gateway comprises one or more respective photodiodes. Further, the optical gateway is operable to determine, for each port, a respective link of the optical communications network communicatively coupling the port with at least one hub transceiver of the plurality of hub transceivers or with at least one edge transceiver of the plurality of edge transceivers, and an identity of the at least one hub transceiver or the at least one edge transceiver.

    DYNAMICALLY SWITCHING QUEUEING SCHEMES FOR NETWORK SWITCHES

    公开(公告)号:US20210076109A1

    公开(公告)日:2021-03-11

    申请号:US16732023

    申请日:2019-12-31

    Inventor: Steven J. Hand

    Abstract: An example system includes a network switch and a plurality of server computers communicatively coupled to the first network switch. The network switch includes a first transceiver configured to transmit data according to a first maximum throughput, and each server computer includes a respective second transceiver configured to transmit data according to a second maximum throughput that is less than the first maximum throughput. The network switch is configured to transmit, using the first transceiver according to the first maximum throughput, first data including a plurality of optical subcarriers to each of the server computers. Each of the server computers is configured to receive, using a respective one of the second transceivers, the first data from the network switch, and extract, from the first data, a respective portion of the first data addressed to the server computer.

    FREQUENCY DIVISION MULTIPLE ACCESS OPTICAL SUBCARRIERS

    公开(公告)号:US20200382216A1

    公开(公告)日:2020-12-03

    申请号:US16578398

    申请日:2019-09-23

    Abstract: A network or system in which a hub or primary node may communicate with a plurality of leaf or secondary nodes. The hub node may operate or have a capacity greater than that of the leaf nodes. Accordingly, relatively inexpensive leaf nodes may be deployed to receive data carrying optical signals from, and supply data carrying optical signals to, the hub node. One or more connections may couple each leaf node to the hub node, whereby each connection may include one or more spans or segments of optical fibers, optical amplifiers, optical splitters/combiners, and optical add/drop multiplexer, for example. Optical subcarriers may be transmitted over such connections, each carrying a data stream. The subcarriers may be generated by a combination of a laser and a modulator, such that multiple lasers and modulators are not required, and costs may be reduced. As the bandwidth or capacity requirements of the leaf nodes change, the number of subcarriers, and thus the amount of data provided to each node, may be changed accordingly. Each subcarrier within a dedicated group of subcarriers may carry OAM or control channel information to a corresponding leaf node, and such information may be used by the leaf node to configure the leaf node to have a desired bandwidth or capacity.

    FREQUENCY DIVISION MULTIPLE ACCESS OPTICAL SUBCARRIERS

    公开(公告)号:US20230092560A1

    公开(公告)日:2023-03-23

    申请号:US17561855

    申请日:2021-12-24

    Abstract: A network or system in which a hub or primary node may communicate with a plurality of leaf or secondary nodes. The hub node may operate or have a capacity greater than that of the leaf nodes. Accordingly, relatively inexpensive leaf nodes may be deployed to receive data carrying optical signals from, and supply data carrying optical signals to, the hub node. One or more connections may couple each leaf node to the hub node, whereby each connection may include one or more spans or segments of optical fibers, optical amplifiers, optical splitters/combiners, and optical add/drop multiplexer, for example. Optical subcarriers may be transmitted over such connections, each carrying a data stream. The subcarriers may be generated by a combination of a laser and a modulator, such that multiple lasers and modulators are not required, and costs may be reduced. As the bandwidth or capacity requirements of the leaf nodes change, the number of subcarriers, and thus the amount of data provided to each node, may be changed accordingly. Each subcarrier within a dedicated group of subcarriers may carry OAM or control channel information to a corresponding leaf node, and such information may be used by the leaf node to configure the leaf node to have a desired bandwidth or capacity.

    Out-of-band communication channel for sub-carrier-based optical communication systems

    公开(公告)号:US11581950B2

    公开(公告)日:2023-02-14

    申请号:US17527146

    申请日:2021-11-15

    Abstract: Techniques are described for implementing an out-of-band communication channel used to exchange control channel information in sub-carrier-based optical communication systems. In an example implementation, an optical communication system includes a primary transceiver, a component, and secondary transceivers. The primary transceiver is operable to supply first optical subcarriers to an optical communication path, the first optical subcarriers being amplitude modulated at a first frequency to carry first control information and amplitude modulated at a second frequency to carry second control information. The component is operable to be coupled to the optical communication path and includes circuitry operable to detect the first control information. The secondary transceivers are coupled to a terminal end of the optical communication path. At least one of the secondary transceivers is operable to detect the second control information and block the first control information.

    Out-of-band communication channel for subcarrier-based optical communication systems

    公开(公告)号:US11502771B2

    公开(公告)日:2022-11-15

    申请号:US16893383

    申请日:2020-06-04

    Inventor: Steven J. Hand

    Abstract: An example system includes a hub transceiver and a plurality of edge transceivers. The hub transceiver is operable to determine a plurality of optical subcarriers available for assignment by the hub transceiver to the plurality of the edge transceivers for use in communicating over an optical communications network, and assign, to each of the edge transceivers, a respective subset of the optical subcarriers. Each of the subsets of the optical subcarriers includes a respective data optical subcarrier for transmitting data over the optical communications network. At least one of the subsets of the optical subcarriers includes one or more respective idle optical subcarriers. The hub t transceiver is also operable to transmit to each of the edge transceivers, an indication of the respective subset of the optical subcarriers assigned to the edge transceiver.

Patent Agency Ranking