Abstract:
Surface generation and positional gain adjustment techniques for an imager are described. Embodiments of the techniques use zones having flexible boundaries which can be reconfigured depending upon the type of lens being used in a given application. Each pixel within each zone is multiplied by a correction factor dependent upon the particular zone while the pixel is being read out from the array. The correction factors comprise coefficients that are different for each color channel and in some instances different for each corner of each color channel.
Abstract:
An imager pixel has a photosensitive JFET structure having a channel region located above a buried charge accumulation region. The channel region has a resistance characteristic that changes depending on the level of accumulated charge in the accumulation region. During an integration period, incident light causes electrons to be accumulated inside the buried accumulation region. The resistance characteristic of the channel region changes in response to a field created by the charges accumulated in the accumulation region. Thus, when a voltage is applied to one side of the channel, the current read out from the other side is characteristic of the amount of stored charges.
Abstract:
A pixel cell with improved lag characteristics without increased noise. The pixel cell according to embodiments of the invention includes a photo-conversion device and a floating diffusion region switchably coupled to the photo-conversion device. The pixel cell includes a reset transistor, which has a first terminal electrically connected to the floating diffusion region and a second terminal switchably coupled to first and second voltage sources. The first voltage source is higher than the second voltage source. The pixel cell operates by returning a potential on the photo-conversion device to a value approximately equal to a value of a potential barrier between the photo-conversion device and the floating diffusion region prior to generating charge in the photo-conversion device.
Abstract:
A method and apparatus that allows for image denoising in an imaging device. The method and implementing apparatus selects a kernel, which includes neighboring pixel pairs for a identified pixel, determines average output signal values for pixel pairs in the correction kernel, determines the difference in the average values and the identified pixel's value, compares the difference values to a threshold and incorporates selected average pixel pair values into the identified pixel's value for pixel pairs having difference values equal to or less than or equal to the threshold value.
Abstract:
An imager pixel has a photosensitive JFET structure having a channel region located above a buried charge accumulation region. The channel region has a resistance characteristic that changes depending on the level of accumulated charge in the accumulation region. During an integration period, incident light causes electrons to be accumulated inside the buried accumulation region. The resistance characteristic of the channel region changes in response to a field created by the charges accumulated in the accumulation region. Thus, when a voltage is applied to one side of the channel, the current read out from the other side is characteristic of the amount of stored charges.
Abstract:
A method and apparatus that allows for the correction of multiple defective pixels in an imager device. In one exemplary embodiment, the method includes the steps of selecting a correction kernel for a defective pixel, determining average and difference values for pixel pairs in the correction kernel, and substituting an average value from a pixel pair for the value of the defective pixel.
Abstract:
An imager pixel has a photosensitive JFET structure having a channel region located above a buried charge accumulation region. The channel region has a resistance characteristic that changes depending on the level of accumulated charge in the accumulation region. During an integration period, incident light causes electrons to be accumulated inside the buried accumulation region. The resistance characteristic of the channel region changes in response to a field created by the charges accumulated in the accumulation region. Thus, when a voltage is applied to one side of the channel, the current read out from the other side is characteristic of the amount of stored charges.
Abstract:
Methods, apparatuses and systems are disclosed for accelerating the operation of the automatic functions of an imager, e.g. a camera system. The automatic functions may, for example, include one or more of auto-focus, auto-exposure and auto-white balance. A special “windowing mode” is implemented in which information is acquired from only a subset of defined windows from the full pixel array area in order to set image capture parameters of the imager in accordance with current scene conditions
Abstract:
An imager pixel has a photosensitive JFET structure having a channel region located above a buried charge accumulation region. The channel region has a resistance characteristic that changes depending on the level of accumulated charge in the accumulation region. During an integration period, incident light causes electrons to be accumulated inside the buried accumulation region. The resistance characteristic of the channel region changes in response to a field created by the charges accumulated in the accumulation region. Thus, when a voltage is applied to one side of the channel, the current read out from the other side is characteristic of the amount of stored charges.
Abstract:
A pixel cell that utilizes a JFET transistor, instead of a CMOS transistor, linked to each pixel's photosensor as an anti-blooming and/or transfer transistor to provide an overflow path for electrons during charge integration. Using a JFET transistor reduces charge uncertainty and fixed pattern noise in the imaging system.