Abstract:
Embodiments of a cannula seal are disclosed. In some embodiments, a cannula seal can include a base portion that engages with a cannula; and a seal portion integrally formed with the base portion that slidebly engages with an instrument shaft such that an insertion frictional force between the seal portion and the instrument shaft for insertion of the instrument shaft is symmetrical and substantially equal with a retraction frictional force.
Abstract:
Methods and systems for damping vibrations in a surgical system are disclosed herein. The damping of these vibrations can increase the precision of surgery performed using the surgical system. The surgical system can include one or several moveable set-up linkages. A damper can be connected with one or several of the set-up linkages. The damper can be a passive damper and can mitigate a vibration arising in one or more of the set-up linkages. The damper can additionally prevent a vibration arising in one of the linkages from affecting another of the set-up linkages. In some embodiments the damper is a squeeze film damper. In some embodiments, the squeeze film damper includes an insert having a plurality of first protrusions, a cup configured to receive the insert, and the cup having a having a plurality of second protrusions interdigitated with the plurality of first protrusions.
Abstract:
Embodiments of a cannula seal are disclosed. In some embodiments, a cannula seal can include a base portion that engages with a cannula; and a seal portion integrally formed with the base portion that slidebly engages with an instrument shaft such that an insertion frictional force between the seal portion and the instrument shaft for insertion of the instrument shaft is symmetrical and substantially equal with a retraction frictional force.
Abstract:
Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector in space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and methods for their use are also provided.
Abstract:
Devices, systems, and methods for avoiding collisions between a manipulator arm and an outer patient surface by moving the manipulator within a null-space. In response to a determination that distance between an avoidance geometry and obstacle surface, corresponding to a manipulator-to-patient distance is less than desired, the system calculates movement of one or more joints or links of the manipulator within a null-space of the Jacobian to increase this distance. The joints are driven according to the reconfiguration command and calculated movement so as to maintain a desired state of the end effector. In one aspect, the joints are also driven according to a calculated end effector displacing movement within a null-perpendicular-space of the Jacobian to effect a desired movement of the end effector or remote center while concurrently avoiding arm-to-patient collisions by moving the joints within the null-space.
Abstract:
A patient side cart for a teleoperated surgical system may include a base, a column connected to the base, a boom connected to the column, a manipulator arm connected to the boom, and a vibration reduction member. The manipulator arm may be configured to support a surgical instrument. The vibration reduction member may be configured to be moved between deployed and retracted positions relative to the base. The vibration reduction member may engage a ground surface in the deployed position and not be in contact with the ground surface in the retracted position. Various exemplary embodiments also relate to carts including a vibration reduction member and methods of controlling a vibration reduction member.
Abstract:
A robotic arm including a parallel spherical five-bar linkage with a remote center of spherical rotation. The robotic arm movably supports an endoscopic camera. Two outboard links are pivotally coupled together. At least one of the two outboard links supports the endoscopic camera. Two inboard links are respectively pivotally coupled to the two outboard links such that the two inboard links are able to cross over one another. The two inboard links moveably support the two outboard links. A ground link is pivotally coupled to the two inboard links. The ground link moveably supports the two inboard links.
Abstract:
Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector in space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and methods for their use are also provided.
Abstract:
A robotic medical system that includes a quick-connect/disconnect feature to facilitate the connecting and disconnecting of a robotic medical arm to and from a set-up arm is disclosed. The robotic medical system includes a robotic medical arm including an interface having a downward-oriented hook located at an upper portion thereof, and an electrical connector located at a lower portion thereof. The system further includes a set-up arm including an interface having an upward-oriented hook located at an upper portion thereof, and an electrical connector located at a lower portion thereof. To connect the robotic medical arm to the set-up arm, a user links the downward-oriented hook to the upward-oriented hook, and pivots the robotic medical arm until the respective electrical connectors mate with each other. To disconnect the robotic medical arm from the set-up arm, a user pivots the robotic medical arm to disconnect the electrical connectors, and then de-links the hooks.
Abstract:
A robotic arm including a parallel spherical five-bar linkage with a remote center of spherical rotation. The robotic arm movably supports an endoscopic camera. Two outboard links are pivotally coupled together. At least one of the two outboard links supports the endoscopic camera. Two inboard links are respectively pivotally coupled to the two outboard links such that the two inboard links are able to cross over one another. The two inboard links moveably support the two outboard links. A ground link is pivotally coupled to the two inboard links. The ground link moveably supports the two inboard links.