Abstract:
Methods, apparatuses, and computer readable media are shown for multi-user scheduling in wireless local-area networks (WLANs). A wireless communication device is shown including circuitry to determine a plurality of schedules for each of a plurality of channels for an orthogonal frequency division multiple access (OFDMA) communication in a wireless local-area network (WLAN). Each of the plurality of schedules may include a frequency allocation for one or more communication devices. The circuitry may be further configured to transmit the corresponding schedule of the one or more schedules on each of the one or more channels. Each of the plurality of schedules may include a schedule type and a user association identification (AID) list. A number of user AIDs in the user AID list may be based on the schedule type.
Abstract:
Embodiments of an access point and method for high-efficiency WLAN (HEW) communication are generally described herein. In some embodiments, the access point may be configured to operate as a master station and may configure an HEW frame to include a legacy signal field (L-SIG), an HEW signal field (HEW SIG-A) following the L-SIG, and one or more HEW fields following the HEW SIG-A. The L-SIG may be configured for transmission using a legacy number of data subcarriers, a legacy number of pilot subcarriers and a number of additional reference subcarriers modulated with a known reference sequence. At least one symbol of the HEW SIG-A and the one or more HEW fields following the HEW SIG-A of the HEW frame may be configured for transmission using additional data subcarriers. The additional data subcarriers may correspond to the additional reference subcarriers of the L-SIG.
Abstract:
Embodiments of a system and methods for distinguishing high-efficiency Wi-Fi (HEW) packets from legacy packets are generally described herein. In some embodiments, an access point may select a value for the length field of a legacy signal field (L-SIG) that is non-divisible by three for communicating with HEW stations and may select a value for the length field that is divisible by three for communicating with legacy stations. In some embodiments, the access point may select a phase rotation for application to the BPSK modulation of at least one of the first and second symbols of a subsequent signal field to distinguish a high-throughput (HT) PPDU, a very-high throughput (VHT) PPDU and an HEW PPDU.
Abstract:
Embodiments of a high-efficiency (HE) communication station and method for HE communication in a wireless network are generally described herein. The HE communication station may communicate 4× longer-duration OFDM symbols on channel resources in accordance with an OFDMA technique. The channel resources may comprise one or more resource allocation units with each resource allocation unit having a predetermined number of data subcarriers. The station may also configure the resource allocation units in accordance with one of a plurality of subcarrier allocations for one of a plurality of interleaver configurations. The station may process the longer-duration OFDM symbols with a 512-point fast-Fourier Transform (FFT) for communication over a 40 MHz channel bandwidth comprising a 40 MHz resource allocation unit, and with a 1024-point FFT for communication over an 80 MHz channel bandwidth comprising either two 40 MHz resource allocation units or one 80 MHz resource allocation unit.
Abstract:
This disclosure describes systems, methods, and devices related to service set compression. A device may determine a wake-up frame comprising one or more fields, wherein the one or more fields indicate an action to be taken on a receiving device. The device may determine an identifier to be indicated in the wake-up frame. The device may determine a size of the identifier. The device may cause to compress the identifier forming a compressed output, wherein the identifier is compressed by applying a cyclic redundancy code (CRC) computation. The device may identify a portion of the compressed output. The device may cause to send the wake-up frame to a receiving device, wherein the wake-up frame comprises the portion of the compressed output based on the size of the identifier.
Abstract:
This disclosure describes systems, methods, and devices related to wake-up radio (WUR) advertisement channels. A device may include a wake-up receiver (WURx) and a primary connectivity radio. The device may determine a wake-up radio (WUR) discovery subchannel for WUR advertisement. The WUR discovery subchannel may be associated with a channel of a frequency band. The device may generate a WUR discovery frame comprising a WUR advertisement. The device may transmit, by the WURx, the WUR discovery frame to a second device using the WUR discovery subchannel. The device may identify a response from the second device indicating an acknowledgment of the WUR discovery frame.
Abstract:
Embodiments of a high-efficiency Wi-Fi (HEW) station, access point (AP), and method for communication in a wireless network are generally described herein. In some embodiments, the HEW AP may transmit a resource allocation message to indicate an allocation of channel resources for uplink transmissions by one or more HEW stations. The channel resources may include multiple channels, each of which may include multiple sub-channels and an extra portion of channel resources. The resource allocation message may include multiple sub-channel allocation blocks to indicate an allocation for a particular HEW station. A length of the sub-channel allocation blocks may be based on various factors, such as a number of channels included in the channel resources and a sub-carrier bandwidth.
Abstract:
Embodiments of a high-efficiency Wi-Fi (HEW) station, access point (AP), and method for random access contention in a wireless network are generally described herein. In some embodiments, the HEW station may receive a beacon frame that indicates a number of trigger frames (TFs) included in a beacon interval. The beacon frame may be received from an HEW access point (AP) in channel resources that include multiple sub-channels. The HEW station may receive a random access TF that indicates a random access portion of the sub-channels that are allocated for random access contention during an uplink transmission period. The HEW station may select a candidate sub-channel from the channel resources. When the candidate sub-channel is included in the random access portion, the HEW station may transmit an association request (AR) frame on the candidate sub-channel during the uplink transmission period.
Abstract:
Embodiments of the disclosure provide bandwidth allocation in wireless telecommunications including communication devices that can operate according to different operating bandwidth. The bandwidth allocation can include allocation of subcarrier blocks having specific sizes. The subcarriers blocks can be contiguous within a channel or can be non-contiguous or distributed.
Abstract:
Logic for collision mitigation between transmissions of wireless transmitters and receivers operating at different bandwidths. Logic of the receivers may be capable of receiving and detecting signals transmitted at narrower bandwidths. In several embodiments, the receivers comprise a clear channel assessment logic that implements a guard interval (or cyclic prefix) detector to detect transmissions at narrower bandwidths. For instance, a two MegaHertz (MHz) bandwidth receiver may implement a guard interval detector to detect 1 MHz bandwidth signals and a 16 MHz bandwidth receiver may implement logic to detect one or more 1 MHz bandwidth signals and any other combination of, e.g., 1, 2, 4, 8 MHz bandwidth signals. In many embodiments, the guard interval detector may be implemented to detect guard intervals on a channel designated as a primary channel as well as on one or more non-primary channels.