Abstract:
The present disclosure provide a transmission method and a device, which relate to the technical field of communications and reduce overhead and improve work efficiency in an application of cooperative transmission in aspects of synchronization, sharing of information such as data and the like, obtaining of channel information and data transmission. Meanwhile application scenarios may also be extended. The method specifically includes: obtaining, by an access point AP, a parameter value, wherein the parameter value is a frequency difference between a crystal oscillator frequency of the AP and a reference crystal oscillator frequency of a reference AP or a delay difference of the AP with respect to the reference AP; compensating, by the AP, a phase difference or a time difference according to the parameter value when both of the AP and the reference AP send data. The present disclosure is applied to an application of a cooperative transmission.
Abstract:
The present disclosure discloses a method and an apparatus for generating a long training sequence and sending a signal, and belongs to the field of wireless communications. The method includes: obtaining a plurality of long training sequences according to a system parameter and a preset sequence construction formula, wherein the plurality of long training sequences include a plurality of basic training sequences and a plurality of shift training sequences obtained according to cyclic shift of the basic training sequences; and configuring a mapping rule between a terminal device and a long training sequence, for enabling the terminal device to select a long training sequence according to the mapping rule as a long training sequence for sending a signal. By adopting the present disclosure, energy consumption of the receiving end may be reduced and accuracy of channel estimation may be improved.
Abstract:
A method for sending information and a device thereof are provided. The method includes: selecting a sequence corresponding to original information to be sent according to mapping table of information-sequence; performing cyclic redundancy check on the original information according to the sequence to obtain a cyclic redundancy check code; and sending the original information and the cyclic redundancy check code. Compared with the conventional technology, no modifications on existing chips or protocols are required in the embodiments of the application, and development costs are saved.
Abstract:
The present application discloses example encoding methods and apparatuses, and decoding methods and apparatuses, and relate to the field of media technologies. One example method includes obtaining a bitstream, and obtaining a plurality of data packets based on the bitstream. Based on identifiers of the plurality of data packets, the plurality of data packets is sent to a plurality of entropy decoders for decoding, to obtain a plurality of syntax elements. Media content is restored based on the plurality of syntax elements.
Abstract:
An uplink multi-user multi-input multi-output establishment method includes broadcasting, by a network side device, an uplink data sending announcement; receiving buffer information sent by a terminal that needs to send data, where the buffer information includes at least a sending level and a data sending length of to-be-sent data; determining, according to the buffer information, scheduling information for establishing uplink multi-user multi-input multi-output; and sending, to a terminal that is allowed to send data and selected from the terminal that needs to send data, a clear to send frame that carries the scheduling information, so that the terminal that is allowed to send data sends the to-be-sent data according to the scheduling information. The embodiments of the present disclosure effectively implement uplink multi-user multi-input multi-output establishment, so that signaling interworking is reduced, resource overheads are reduced, and data sending efficiency is improved.
Abstract:
The present disclosure discloses an Internet of Things communication method. In the present disclosure, a downlink data frame sent by the network side device includes a legacy preamble, a HEW preamble, and a data field; a subcarrier resource that is corresponding to the data field in a frequency domain includes at least one resource unit RU; and the RU is used to send a downlink IoT frame to the IoT terminal, where the downlink IoT frame includes an IoT preamble and an IoT data field, the IoT preamble is used to transmit physical layer control information of the downlink IoT frame, and the IoT data field is used to transmit downlink data between the network side device and the IoT terminal. According to the present disclosure, a network side device in a WLAN can schedule an IoT terminal, thereby reducing a conflict risk in an IoT communication process.
Abstract:
This application discloses a method and an apparatus for sending a virtual reality image, to improve accuracy of an image compression ratio determined when a virtual reality image is sent. The method includes: receiving, by a virtual reality host, first motion information sent by a virtual reality device, where the first motion information is used to indicate a current motion status of the virtual reality device; determining, by the virtual reality host, a first image compression ratio based on the motion information; compressing, by the virtual reality host, a to-be-sent virtual reality image based on the first image compression ratio; and sending, by the virtual reality host, the compressed virtual reality image to the virtual reality device.
Abstract:
An uplink multi-user multi-input multi-output establishment method includes broadcasting, by a network side device, an uplink data sending announcement; receiving buffer information sent by a terminal that needs to send data, where the buffer information includes at least a sending level and a data sending length of to-be-sent data; determining, according to the buffer information, scheduling information for establishing uplink multi-user multi-input multi-output; and sending, to a terminal that is allowed to send data and selected from the terminal that needs to send data, a clear to send frame that carries the scheduling information, so that the terminal that is allowed to send data sends the to-be-sent data according to the scheduling information. The embodiments of the present disclosure effectively implement uplink multi-user multi-input multi-output establishment, so that signaling interworking is reduced, resource overheads are reduced, and data sending efficiency is improved.
Abstract:
A method for uplink multiuser data transmission and a system for uplink multiuser multiple input multiple output are provided. The method implemented by an access point (AP) includes: sending, indication information to at least two stations (STAs), wherein the indication information indicates that the at least two STAs perform an uplink multiuser data transmission; receiving, uplink data sent by the at least two STAs through channels, respectively; and demodulating, the uplink data using receiving beams corresponding to pre-estimated channels, respectively. According to the embodiments of the present disclosure, the AP receives the uplink data from multiple STAs through different channels from the STAs to the AP respectively, and demodulates data using the receiving beams corresponding to the channels respectively, thereby realizing that the AP performs separation and demodulation of the uplink data sent by multiple STAs and realizing the uplink multiuser data transmission.
Abstract:
Embodiments of the present invention disclose a frame transmission method for a wireless local area network and a wireless local area network apparatus, and relate to the field of communications technologies. According to the present invention, in a frame transmission process in a WLAN, a frame sent by a wireless local area network WLAN apparatus is received, and the frame of a particular standard is recognized by detecting a user common signal field included in the frame, so that backward compatibility of a WLAN apparatus is implemented, and hybrid networking of WLAN apparatuses of different standards can be supported, thereby improving flexibility of network deployment, and reducing complexity of networking.