Abstract:
The present disclosure relates to a user device and a network node. The user device comprises a transceiver configured to broadcast an access signal SA when not being connected to any radio communication networks, receive an access response signal SR in response to broadcasting the access signal SA, communicate with at least one network node of the radio communication network. The network node comprises a transceiver and a processor; wherein the transceiver is configured to receive a broadcasted access signal SA, wherein the broadcasted access signal SA comprises identity information of the user device; wherein the processor is configured to assign at least one frequency spectrum segment for communication for the user device; and wherein the transceiver is further configured to transmit an access response signal SR to the user device.
Abstract:
Mobile station and method for saving energy in the mobile station. The method includes generating energy saving information associated with said mobile station, and which indicates an energy status of said mobile station. The method further includes transmitting the energy saving information to at least one first network node, and receiving, from said at least one first network node, an instruction for energy saving, based on the energy saving information.
Abstract:
Methods and nodes for transmission of downlink control channel signals in a downlink frequency carrier of a wireless communication system, wherein at least two PRB pairs, configurable for the transmission of a downlink control channel have different numbers of time-frequency resource elements available for the transmission of said downlink control channel. The method comprises allocating at least one set S of PRB pairs; arranging time-frequency resource elements from said set S into an aggregation comprising at least one level; determining a set LS of aggregation levels supported for the transmission of a downlink control channel within the allocated set of PRB pairs, based on the number of time-frequency resource elements available for the transmission of a downlink control channel in PRB pairs of the set S; and transmitting the downlink control channel within said set S of PRB pairs.
Abstract:
A method in a radio resource allocator of a radio access network is disclosed. The network comprises at least one first layer and at least one second layer, the first layer is higher than the second layer; and the method in a first radio resource allocator of the first layer comprises: decides if a second radio resource allocator of the second layer in an autonomous mode or in a controlled mode for at least one portion of available radio resources; when the second radio resource allocator in the autonomous mode, allocates the at least one portion of available radio resources to the second radio resource allocator; when the second radio resource allocator in the controlled mode, allocates the at least one portion of available resources to radio resource users of the radio resource users of the second radio resource allocator and/or radio resource allocators of a third lower layer.
Abstract:
Mobile station and method for saving energy in the mobile station. The method includes generating energy saving information associated with said mobile station, and which indicates an energy status of said mobile station. The method further includes transmitting the energy saving information to at least one first network node, and receiving, from said at least one first network node, an instruction for energy saving, based on the energy saving information.
Abstract:
A method in a radio resource allocator of a radio access network is disclosed. The network comprises at least one first layer and at least one second layer, the first layer is higher than the second layer; and the method in a first radio resource allocator of the first layer comprises: decides if a second radio resource allocator of the second layer in an autonomous mode or in a controlled mode for at least one portion of available radio resources; when the second radio resource allocator in the autonomous mode, allocates the at least one portion of available radio resources to the second radio resource allocator; when the second radio resource allocator in the controlled mode, allocates the at least one portion of available resources to radio resource users of the radio resource users of the second radio resource allocator and/or radio resource allocators of a third lower layer.
Abstract:
A gateway comprises a transceiver configured to receive a sequence of data packets on a Radio Access Bearer, RAB, from a core network, a processor configured to obtain a first distribution of the received sequence of data packets into a first sub-sequence of data packets and at least a second sub-sequence of data packets, wherein the transceiver is configured to forward the first sub-sequence of data packets on the RAB to a master access node, forward the second sub-sequence of data packets on the RAB to a secondary access node. The master access node comprises a processor, a transceiver configured to receive a first sub-sequence of data packets of a sequence of data packets carried by a RAB from a gateway, wherein the RAB is associated with a user device, and to forward at least one part of the first sub-sequence of data packets on the RAB to the user device.
Abstract:
The invention relates to a first network node and a second network node. The first network node being configured to communicate with a user device over at least two radio channels and comprising: a transceiver configured to receive a first sequence of data packets of a data flow addressed to the user device from a second network node; a processor configured to split the first sequence of data packets into at least one first sub-sequence of data packets and one second sub-sequence of data packets; wherein the transceiver further is configured to transmit the first sub-sequence of data packets in a first set of frequency resources over a first radio channel and the second sub-sequence of data packets in a second set of frequency resources over a second radio channel to the user device, wherein the first set of frequency resources and the second set of frequency resources are non-overlapping.
Abstract:
The present invention relates to a Method for scheduling and/or muting radio resources in a wireless communication system, said wireless communication system comprising a plurality of network nodes and a plurality of user nodes; the method comprising the steps of: measuring, by at least one user node, received signal strength of radio signals transmitted from one or more network nodes so as to obtain received signal quality and/or interference associated with said one or more network nodes; arranging, by said user node, the received signal quality and/or interference associated with said one or more network nodes in an order or a ranking with respect to at least one radio signal criterion; signalling, by said user node, said order or ranking to at least one network node; and scheduling and/or muting radio resources based on said signalled order or ranking.
Abstract:
A data transmission and signaling method in a transmitter device configured for concurrent transmission of non-orthogonal independent downlink data streams to receiver devices in a wireless communication system comprises sending to all receiver devices control information that includes indices of receiver devices selected for transmission, code rates of selected receiver devices, a label bit-to-receiver device allocation, an index of an expanded constellation, and a number of resource elements used for transmission.