Abstract:
A perpendicular magnetic recording (PMR) writer is disclosed wherein a hybrid side shield (hSS) has an inner 15-24 kG hot seed layer formed between a gap layer and an outer hSS layer to improve tracks per inch capability while maintaining acceptable adjacent track interference (ATI). The outer hSS layer has a magnetization saturation (Ms) value from 10-19 kG and less than that of the inner hot seed layer. The inner hot seed layer has a far side that is 100 to 500 nm from a center of the main pole and may be coplanar with the sidewalls of an overlying write gap and 19-24 kG trailing shield layer. As a result, the side shield return field is substantially improved over a full side shield made of 12-16 kG material. Meanwhile, the trailing shield return field is substantially the same to enable better area density capability (ADC).
Abstract:
A perpendicular magnetic recording writer is disclosed with a side shield separated from a write pole side by a gap layer at an air bearing surface (ABS) where the side shield has a first sidewall facing the write pole with an end at height (h1) from the ABS, and a second sidewall at height h1 that is parallel to the ABS. The write pole side is curved such that a first portion proximate to the ABS is at an angle of 0 to 40 degrees with respect to a center plane formed orthogonal to the ABS, and a second section proximate to a corner where the curved side connects with a flared main pole side is formed substantially parallel to the second sidewall. When h1 is 30-80 nm, and the corner is 80-150 nm from the ABS, overwrite is improved while cross-track field gradient is enhanced.
Abstract:
A shield structure for a PMR writer is disclosed and features a first trailing shield on a write gap, and a second (PP3) trailing shield on the first trailing shield and magnetically connected to the main pole layer. From a top-down view along the down-track direction, the PP3 trailing shield has various shapes to provide shape anisotropy such that following hard magnet or reverse magnet initialization, PP3 trailing shield magnetic orientation has a stable three domain configuration thereby minimizing skip track erasure (STE) or improving area density capability (ADC). At least one sloped side is introduced that forms an angle >90 degrees with the PP3 trailing shield backside. In other embodiments, a thinner leading shield may be used to improve STE. The PP3 trailing shield may have a dome shape or a planar shape from a down-track cross-sectional view.
Abstract:
A PMR writer is disclosed wherein a hot seed layer (HS) made of a 19-24 kilogauss (kG) magnetic material is formed between a side gap and a 10-16 kG magnetic layer in the side shields, and between a 16-19 kG magnetic layer and the leading gap in the leading shield to improve Hy_grad and Hy_grad_x while maintaining write-ability. The HS is from 10 to 100 nm thick and has a first side facing the write pole with a height of ≦0.15 micron, and a second side facing a main pole flared side that may extend to a full side shield height of ≦0.5 micron. First and second sides may form a continuous curve or the a double tapered design where first and second sides have different angles with respect to a center plane. The side shield design described herein is especially beneficial for side gaps of 20-60 nm.
Abstract:
A perpendicular magnetic recording (PMR) head is fabricated with main pole and a trailing edge shield antiferromagnetically coupled across a write gap by either having the write gap layer formed as a synthetic antiferromagnetic tri-layer (SAF) or formed as a monolithic layer of antiferromagnetic material. The coupling improves the write performance of the writer by enhancing the perpendicular component of the write field and its gradient. Methods of fabricating the writer are provided.
Abstract:
A PMR writer is disclosed wherein one or more of the leading shield, side shields, and trailing shield are comprised of first portion that is elongated in a cross-track direction at the ABS, and a second portion consisting of a plurality of pads each having a side adjoining the first portion along a side opposite the ABS. Pads may have a polygonal shape or a shape with curvature and are separated by portions of a dielectric layer. When a length of the pads in a down-track direction is substantially greater than a width in a cross-track direction and height in a vertical direction, then shape anisotropy in the shield is biased in a down-track direction and is perpendicular to the driving flux direction from the main pole tip thereby minimizing 180 degree rotations in magnetization and associated adjacent track erasure.
Abstract:
The present embodiments can generally provide a magnetic write head structure with optimized gap current distribution to maximize the current-assisted areal density capacity (ADC) gain in hard-disk-drive storage devices. In a first example embodiment, a non-dual-write-shield (nDWS) write head can include a main pole (MP), a trailing shield (TS), and a write gap (WG) disposed between the MP and the TS. The write head can also include a side shield (SS), a leading shield (LS), and a write shield (WS). The write head can include a side gap (SG) between the MP and the SS on both sides of the MP tip, and a leading gap (LG) between the MP and the LS. The write head can also include a coil wrapped around the MP through a PP3 shield that is configured to direct a time-dependent write current to saturate magnetization of the MP.
Abstract:
A magnetic recording writer is disclosed. In some embodiments, the writer includes a main pole having a front portion and a back portion, a gap layer surround the main pole at the ABS, and a shield structure. The front portion includes a pole tip at an ABS plane, a pole tip thickness in a down-track direction, and curved sidewalls on each side of a center plane that is orthogonal to the ABS and bisects the main pole. The back portion includes first flared sidewalls extending from the curved sidewalls at an angle between 0 and 25 degrees relative to planes parallel to the center plane. The shield structure includes sidewalls having a sidewall portion facing the main pole and formed substantially conformal to the curved sidewalls up to a height of about 30-200 nm where the sidewall portions no longer follow the shape of the main pole.
Abstract:
A method of forming a spin transfer torque reversal assisted magnetic recording (STRAMR) writer is disclosed wherein a spin torque oscillator (STO) has a flux guiding layer (FGL) wherein magnetization flips to a direction substantially opposing the write gap (WG) field when sufficient current (IB) density is applied across the STO between a trailing shield and main pole (MP) thereby enhancing the MP write field. The FGL has a center portion with a larger magnetization saturation×thickness (MsT) than in FGL outer portions proximate to STO sidewalls. Accordingly, lower IB density is necessary to provide a given amount of FGL magnetization flipping and there is reduced write bubble fringing compared with writers having a FGL with uniform MsT. Lower MsT is achieved by partially oxidizing FGL outer portions. In some embodiments, there is a gradient in outer FGL portions where MsT increases with increasing distance from FGL sidewalls.
Abstract:
A PMR (perpendicular magnetic recording) write head configured for thermally assisted magnetic recording (TAMR) and microwave assisted magnetic recording (MAMR) is made adaptive to writing at different frequencies by inserting thin layers of magnetic material into the material filling the side gaps (SG) between the magnetic pole (MP) and the side shields (SS). At high frequencies, the thin magnetic layers saturate and lower the magnetic potential of the bulky side shields