摘要:
Methods for the manufacture of an electromagnetic coil assembly are provided. In one embodiment, the method includes joining a first end portion of a braided lead wire to a coiled magnet wire. A dielectric-containing material is applied in a wet-state over the coiled magnet wire and over the first end portion of the braided lead wire. The dielectric-containing material is cured to produce an electrically-insulative body in which the coiled magnet wire and the first end portion of the braided lead wire are at least partially embedded. Prior to application of the dielectric-containing material, the braided lead wire is at least partially impregnated with a masking material deterring wicking of the dielectric-containing material into an intermediate portion of the braided lead wire. In certain cases, the masking material may be removed from the braided lead wire after curing, and the electrically-insulative body may be sealed within a canister.
摘要:
Systems and methods for automated electroplating are disclosed. An electroplating system includes a first chamber configured to receive one or more parts. The first chamber includes a vessel extending from a first end to a second end, a first cap proximate to the first end a first cathode contact coupled to the first end, a second cathode contact coupled to the second end, and a plurality of anodes formed on an inner surface of the vessel. The electroplating system further includes at least one reservoir and a first conduit and a second conduit each coupled between the at least one reservoir and the first chamber. The first conduit may be configured to transfer fluid from the first reservoir to the first chamber and the second conduit may be configured to transfer fluid from the first chamber to the at least one reservoir.
摘要:
Methods for fabricating wires insulated by low porosity glass coatings are provided, as are high temperature electromagnetic (EM) devices containing such wires. In embodiments, a method for fabricating a high temperature EM device includes applying a glass coating precursor material onto a wire. The glass coating precursor material contains a first plurality of glass particles having an initial softening point. After application onto the wire, the glass coating precursor material is heat treated under process conditions producing a crystallized intermediary glass coating having a modified softening point exceeding the initial softening point. The crystallized intermediary glass coating is then infiltrated with a filler glass precursor material containing a second plurality of glass particles. After infiltration, the filler glass precursor material is heat treated to consolidate the second plurality of glass particles into the crystallized intermediary glass coating and thereby yield a low porosity glass coating adhered to the wire.
摘要:
Methods are disclosed for fabricating heat exchangers and Heat Exchanger (HX) tubes, as are heat exchangers fabricated in accordance with such methods. In embodiments, the method includes fabricating an HX tube by at least partially forming the elongated tube body utilizing a cold spray process during which a metallic feedstock powder is deposited over a removable mandrel. The HX tube is separated from the removable mandrel at some juncture following cold spray deposition of the tube body.
摘要:
Methods for forming sintered-bonded high temperature coatings over ceramic turbomachine components are provided, as are ceramic turbomachine components having such high temperature coatings formed thereover. In one embodiment, the method includes the step or process of removing a surface oxide layer from the ceramic component body of a turbomachine component to expose a treated surface of the ceramic component body. A first layer of coating precursor material, which has a solids content composed predominately of at least one rare earth silicate by weight percentage, is applied to the treated surface. The first layer of the coating precursor material is then heat treated to sinter the solids content and form a first sintered coating layer bonded to the treated surface. The steps of applying and sintering the coating precursor may be repeated, as desired, to build a sintered coating body to a desired thickness over the ceramic component body.
摘要:
Methods for depositing wear resistant NiW plating systems on metallic components are provided. In various embodiments, the method includes the step or process of preparing a NiW plating bath containing a particle suspension. The NiW plating bath is prepared by introducing wear resistant particles into the NiW plating path and adding at least one charged surfactant. The first type of wear resistant particles and the first charged surfactant may be contacted when introduced into the NiW plating bath or prior to introduction into the NiW plating bath. The at least one charged surfactant binds with the wear resistant particles to form a particle-surfactant complex. The wear resistant NiW plating system is then electrodeposited onto a surface of a component at least partially submerged in the NiW plating bath. The resulting wear resistant NiW plating system comprised of a NiW matrix in which the wear resistant particles are embedded.
摘要:
Methods for forming sintered-bonded high temperature coatings over ceramic turbomachine components are provided, as are ceramic turbomachine components having such high temperature coatings formed thereover. In one embodiment, the method includes the step or process of removing a surface oxide layer from the ceramic component body of a turbomachine component to expose a treated surface of the ceramic component body. A first layer of coating precursor material, which has a solids content composed predominately of at least one rare earth silicate by weight percentage, is applied to the treated surface. The first layer of the coating precursor material is then heat treated to sinter the solids content and form a first sintered coating layer bonded to the treated surface. The steps of applying and sintering the coating precursor may be repeated, as desired, to build a sintered coating body to a desired thickness over the ceramic component body.
摘要:
Methods for producing a coated component are provided, as are coated components having wear resistant coatings. In embodiments, the method includes the step or process of fabricating, purchasing, or otherwise obtaining a component having a component surface. An XP alloy body is formed over the component surface to yield a coated component, wherein P is phosphorus and X is cobalt, nickel, or a combination thereof. After formation of the XP alloy body, the XP alloy body is machined; and, following machining, the coated component is heat treated to precipitate harden the XP alloy body. In certain embodiments, heat treatment may be conducted to concurrently anneal the underlying component in conjunction with precipitation hardening of the XP alloy body. In other instances, the method further includes the step of forming a barrier layer over the component surface prior to deposition of the XP alloy body.
摘要:
Embodiments of a method for producing powder mixtures having uniform dispersion of ceramic particles within larger superalloy particles are provided, as are embodiments of superalloy powder mixtures. In one embodiment, the method includes producing an initial powder mixture comprising ceramic particles mixed with superalloy mother particles having an average diameter larger than the average diameter of the ceramic particles. The initial powder mixture is formed into a consumable solid body. At least a portion of the consumable solid body is gradually melted, while the consumable solid body is rotated at a rate of speed sufficient to cast-off a uniformly dispersed powder mixture in which the ceramic particles are embedded within the superalloy mother particles.
摘要:
Embodiments of an electromagnetic coil assembly are provided, as are methods for the manufacture of an electromagnetic coil assembly. In one embodiment, the method for manufacturing an electromagnetic coil assembly includes the steps of providing a braided aluminum lead wire having a first end portion and a second end portion, brazing the first end portion of the braided aluminum lead wire to a first electrically-conductive interconnect member, and winding a magnet wire into an electromagnetic coil. The second end portion of the braided aluminum lead wire is joined to the magnet wire after the step of brazing.