Abstract:
In an aberration-correcting method according to an embodiment of the present invention, in an aberration-correcting method for a laser irradiation device 1 which focuses a laser beam on the inside of a transparent medium 60, aberration of a laser beam is corrected so that a focal point of the laser beam is positioned within a range of aberration occurring inside the medium. This aberration range is not less than n×d and not more than n×d+Δs from an incidence plane of the medium 60, provided that the refractive index of the medium 60 is defined as n, a depth from an incidence plane of the medium 60 to the focus of the lens 50 is defined as d, and aberration caused by the medium 60 is defined as Δs.
Abstract:
A total internal reflection light illumination apparatus includes a light source providing illumination light L1, a spatial light modulator inputting the illumination light L1 and converging and outputting the illumination light L1 by presenting a lens pattern, an objective lens illuminating an object substrate with illumination light L2 converged and output by the spatial light modulator, and a calculation unit providing, to the spatial light modulator, the lens pattern corresponding to at least one of a desired polarization state, desired penetration length, desired shape, and desired light intensity of the evanescent light L3. The lens pattern converges the illumination light L2 on a pupil plane of the objective lens.
Abstract:
In a light-emitting sealed body, a metal structure (electron emission structure) containing an easily electron-emitting material is used, so that it is not necessary to perform feeding for discharge between electrodes. Therefore, a feeding member does not need to be connected to the metal structure from the outside of a bulb. In addition, in the light-emitting sealed body, the metal structure is disposed in an internal space S of the bulb and a positioning unit of the metal structure is disposed only in the bulb. Therefore, in the light-emitting sealed body, the metal structure and the positioning unit do not penetrate the bulb and are not buried in the bulb and weakened portions are not formed in the bulb made of glass. Therefore, a sealing state of the bulb can be maintained surely.
Abstract:
The present invention relates to a phase modulating apparatus capable of highly accurately and easily correcting the phase modulation characteristic of a reflective electric address spatial light modulator even when a condition of input light is changed. In the LCOS phase modulating apparatus, an input unit inputs the condition of the input light, and a processing unit sets an input value for each pixel. A correction value deriving unit determines a correction condition according to the condition of the input light. A control input value converting unit converts the input value set for each pixel into a corrected input value based on the correction condition. An LUT processing unit converts the corrected input value into a voltage value, and drives each pixel by using a drive voltage equivalent to the converted voltage value.