Abstract:
Disclosed is a flexible-circuit flat cable with cluster section, including at least one cluster section, at least one slip section, a first connection section, and a second connection section. The first connection section is set at a first end of the cluster section. The slip section has a first end connected to a second end of the cluster section and a second end at which the second connection section is set. The four sections are all provided with a plurality of signal transmission lines corresponding to and connecting each other. The first connection section and the second connection section are selectively provided with a connector or a plugging end. Further, the cluster section includes a cluster structure composed of a plurality of clustered flat cable components that are formed by slitting in a direction parallel to extension direction of a flexible circuit board to impose free and independent flexibility for bending to each clustered flat cable component.
Abstract:
A rigid-flex PCB includes at least one rigid PCB (RPCB) and at least one flexible PCB (FPCB). Each RPCB has a connection section; first and second sections separately extended from two lateral edges of the connection section and having at least one FPCB bonding side each; and a weakening structure formed along each joint of the connection section and the first and second sections. Each FPCB has a bending section corresponding to the connection section on the RPCB; first and second sections separately extended from two lateral edges of the bending section and having at least one RPCB bonding side each corresponding to the FPCB bonding sides of the first and second sections of the RPCB. When a proper pressure is applied against the weakening structures, the RPCB may be easily bent broken at the weakening structures to remove the connection section therefrom.
Abstract:
A signal transmission cable is adapted to pass through a hinge assembly and includes a flexible circuit substrate. A first connection section is formed at a first end of the flexible circuit substrate and has a plurality of signal transmission lines provided thereon. A second connection section is formed at a second end of the flexible circuit substrate and has a plurality of signal transmission lines provided thereon. The cable further has a cluster section formed on the flexible circuit substrate between the first and the second connection sections, and has a plurality of signal transmission lines provided thereon to respectively connect at two ends to the signal transmission lines on the first and the second connection sections. The cluster section includes a plurality of clustered flat cables formed by cutting the flexible circuit substrate along a plurality of parallel cutting lines extended in the lengthwise direction of the flexible circuit substrate.
Abstract:
A rigid-flex PCB includes at least one rigid PCB (RPCB) and at least one flexible PCB (FPCB). Each RPCB has a connection section; first and second sections separately extended from two lateral edges of the connection section and having at least one FPCB bonding side each; and a weakening structure formed along each joint of the connection section and the first and second sections. Each FPCB has a bending section corresponding to the connection section on the RPCB; first and second sections separately extended from two lateral edges of the bending section and having at least one RPCB bonding side each corresponding to the FPCB bonding sides of the first and second sections of the RPCB. When a proper pressure is applied against the weakening structures, the RPCB may be easily bent broken at the weakening structures to remove the connection section therefrom.
Abstract:
A composite flexible circuit planar cable includes a flat cable, a first section, and a second section. The flat cable includes a plurality of straight line like parallel and non-jumping conductor lines. At least one jumping line is formed on the first section to interchangeably connect a selected conductive line of the first section to an another selected conductive line. The second section may also form at least one jumping line to interchangeably connect a selected conductive line of the second section to an another selected conductive line. Through such a jumping line, electrical connection can be formed between signal terminals and corresponding and interchanged signal terminals. The plurality of conductor lines of the flat cable includes at least a pair of differential signal conductor lines, a grounding line, and a power line.
Abstract:
A bundled flexible circuit cable with water resistant structure is provided, in which a flexible substrate forms a cluster section having a lap section. In the lap section, a plurality of flat cable components that collectively form the cluster section is arranged to stack by substantially paralleling each other and corresponding up and down and is bonded and positioned by being applied with an adhesive material. The flat cable components are enclosed by a water resistant component at the lap section, whereby water, liquids, and contaminants are prevented from moving through gaps present in the bundled flexible substrate to get into the enclosure of an electronic device so as to realize protection against water, humidity, and dust. A tubular member or a wrapping member is further provided to fit over a section of the cluster section other than the lap section in order to facilitate extension through a holed mechanism device, such as a hinge, and to improve resistance against flexing and bending. The adhesive material can be a material containing conductive particles therein. Further, the substrate of the flexible circuit cable can be of such a design that a shielding layer is included and in electrical connection with a grounding line, whereby the shielding layer enclosing each of the lapped flat cable components in the water resistant structure is electrically connected to the water resistant component containing a conductive substance or the device enclosure to realize protection against electromagnetic interference.
Abstract:
Disclosed is a structure for precision control of electrical impedance of signal transmission circuit board. A substrate forms thereon a plurality of first signal transmission lines, and a first covering insulation layer is formed on a first surface of the substrate to cover a surface of each first signal transmission lines and each spacing section formed between adjacent first signal transmission lines. Each first signal transmission lines can transmit a differential mode signal or a common mode signal. At least one first flattening insulation layer is formed between a surface of the first covering insulation layer and a first conductive shielding layer so that the first flattening insulation layer fills up the height difference between the surface of each first signal transmission line and the spacing section associated with each first signal transmission line to thereby ensure a consistent distance between the signal transmission lines and the conductive shielding layer for realizing precision control of electrical impedance of the signal transmission circuit board.
Abstract:
Disclosed is a structure of electromagnetic wave resistant connector for flexible flat cable. A flexible flat cable defines an insertion device mounting section to which an insertion device is mounted. The insertion device includes a metal member that is at least partly formed of a metal material. The flexible flat cable forms thereon conductive traces on which an insulation layer is provided. The insulation layer has a surface, which forms, in at least a portion thereof, a conductive shielding layer. The conductive shielding layer extends to the insertion device mounting section, so that when the insertion device is mounted to the insertion device mounting section, electrical connection is formed between the metal member of the insertion device and the conductive shielding layer.
Abstract:
Provided is a circuit board based connector with raised projection section, which is formed by applying substrate bonding and formation techniques to make a connector that features a raised projection section. The circuit substrate has an end that is provided with conductive terminals and an opposite end that is provided with flat cable connection terminals for connection with a flat cable. The circuit substrate has a first surface on which the projection section is formed. A shielding layer covers the projection section and a portion of the first surface. The circuit substrate has a second surface on which a second shielding layer is selectively formed. When the circuit substrate is inserted into an insertion space defined in a connection socket with the conductive terminals thereof, the shielding layer and the projection section of the circuit substrate are put into engagement with and thus retained by the insertion space of the connection socket to thereby fix within the connection socket.
Abstract:
Disclosed is a flat signal transmission cable with bundling structure, including at least one flexible circuit. The flexible circuit includes a plurality of clustered flat cable components that are formed by slitting in a direction parallel to extension direction of the flexible circuit to impose free and independent flexibility for bending to each clustered flat cable component. At least one bundling structure is formed on a lateral side edge of a predetermined clustered flat cable component of the cluster section of the flexible circuit. The bundling structure forms a fastening section. When the clustered flat cable components of the cluster section of the flexible circuit are stacked to form a bundled structure, the bundling structure bundles the plurality of clustered flat cable components and is secured by being fastened by the fastening section.