Abstract:
A desalinating system and method is disclosed. The desalination system comprises using a turbo freeze or fast-cooling process to freeze saline water droplets and separate salt crystals from pure water crystals, wherein said system provides for simultaneous injection of saline water droplets and a chilled refrigerant into a freezing chamber at a slip velocity sufficient to reduce the size of the saline water droplets to an optimal diameter.
Abstract:
A system and method for generating an exhaust syngas are disclosed. The system includes a mixing unit, a heat exchanger, and an engine. The mixing unit is configured to mix a hydrocarbon fuel, an oxidant, and water to generate a fuel mixture. The heat exchanger is coupled to the mixing unit and is configured to receive the fuel mixture from the mixing unit, evaporate the water by heating the fuel mixture using a hot fluid, and generate a heated fuel mixture. The engine is coupled to the heat exchanger and is configured to receive the heated fuel mixture from the heat exchanger and generate an exhaust syngas by partially combusting the heated fuel mixture.
Abstract:
The subject matter disclosed herein relates to a liquefaction system. Specifically, the present disclosure relates to systems and methods for condensing a pressurized gaseous working fluid, such as natural gas, using at least one turboexpander in combination with other cooling devices and techniques. In one embodiment, a turboexpander may be used in combination with a heat exchanger using vapor compression refrigeration to condense natural gas.
Abstract:
An apparatus and method for delivering a thickened fluid mixture, including a CO2 recapture system. The apparatus including a proppant storage vessel and a fracturing fluid storage vessel providing a continuos supply of a proppant material and a fracturing fluid to a mixing apparatus. The mixing apparatus configured to output and deliver a thickened fluid mixture of the proppant, the fracturing fluid and a thickener agent at or above the fracturing fluid blending pressure to a high pressure pump assembly. The high pressure pump assembly configured to deliver a high pressure thickened fluid mixture to one or more downstream components at an injection pressure. The apparatus including a CO2 recapture system configured to recapture an exhaust stream from the one or more downstream components and/or other CO2 output sources, and provide a purified and liquefied CO2 fluid stream to the fracturing fluid storage vessel. The apparatus configured for continual operation.
Abstract:
A system and method for producing liquid natural gas (LNG) from a natural gas stream is presented. The system includes a moisture removal device and compressor for removing moisture from and compressing the natural gas stream. The low moisture compressed natural gas stream is cooled in a heat exchanger to discharge a cooled compressed discharge stream. A multi-phase turbo expander provides for further cooling and expansion of the cooled compressed discharge stream, generating an expanded exhaust stream comprising a mixture of a vapor comprised substantially of CH4 and a LNG/ice/solid CO2 slurry. The expanded exhaust stream is separated to generate a vapor stream comprised substantially of CH4 and a liquid natural gas/ice/solid CO2 slurry stream. Further separation of the liquid natural gas/ice/solid CO2 slurry stream generates a liquid natural gas output stream and an output stream comprised substantially of ice/solid CO2.
Abstract:
A carbon dioxide (CO2) capture system and method for removing CO2 from an inlet gas including a first fluid stream inlet providing for the flow of a first fluid stream, such as an inlet gas containing CO2, and a second fluid stream inlet providing for the flow of a second fluid stream, such as steam, an outlet providing for the flow of a CO2 depleted stream from the CO2 capture system, an outlet providing for the flow of a CO2 stream from the CO2 capture system and a concentrator in fluid communication with the first fluid stream. The system further including a first contactor and a second contactor. Each of the first contactor and the second contactor defining therein a first fluidically-isolated, sorbent-integrated, fluid domain for flow of the first fluid stream and CO2 adsorption and a second fluidically-isolated fluid domain for flow of the second fluid stream to assist in desorption.
Abstract:
A method for manufacturing a tower structure of a wind turbine includes additively printing at least a portion of a frame shape of the tower structure of the wind turbine of a first material on a foundation of the tower structure. Further, the first material has a first cure rate. The method also includes allowing the portion of the frame shape to at least partially solidify. The method includes providing a second material around and/or within the portion of the frame shape such that the portion of the frame shape provides support for the second material. The second material includes a cementitious material having a second cure rate that is slower than the first cure rate, with the different cure rates reducing the net printing time for the overall structure. Moreover, the method includes allowing the second material to at least partially solidify so as to form the tower structure.
Abstract:
A method for manufacturing a tower structure of a wind turbine includes printing, via an additive printing device, a plurality of concentric sections of the tower structure of the wind turbine. The concentric sections may be printed simultaneously from concrete, may include tensioning cables or other structural supports, and may define other support flanges or overhangs. After curing, the method may include raising an inner section of the plurality of concentric sections to a top of an adjacent outer section and joining the two sections. This process may be repeated to telescope the concentric sections and raise the tower structure.
Abstract:
A method includes directing a refrigerant fluid mixture and a flow of natural gas through a first heat exchanger for exchanging heat between a natural gas flow path and a first refrigerant flow path. The method also includes expanding the flow of natural gas exiting from the first heat exchanger via a first throttle valve. Further, the method also includes directing a generated cold natural gas vapor and a slurry having a liquefied natural gas and solidified carbon dioxide through a filter sub-assembly. Moreover, the method also includes separating the solidified carbon dioxide by the filter sub-assembly to form a purified liquefied natural gas. Finally, the method includes directing a pulse of a cleaning fluid having at least one of methane and carbon dioxide through the filter sub-assembly to remove the solidified carbon dioxide therefrom and storing the purified liquefied natural gas in a storage tank assembly.
Abstract:
A system and method for generating an improved syngas are disclosed. The system includes a mixing unit, a heat exchanger, an engine and a water gas shift (WGS) reactor. The mixing unit is configured to mix a hydrocarbon fuel, an oxidant, and water to generate a fuel mixture. The heat exchanger is coupled to the mixing unit and configured to receive the fuel mixture and generate a heated fuel mixture. The engine is coupled to the heat exchanger and configured to receive the heated fuel mixture and generate an exhaust syngas. The WGS reactor is coupled to the engine and configured to receive the exhaust syngas and provide a water gas shift reaction of the hydrogen, carbon monoxide and the water vapor in the exhaust syngas to provide a reduction in a level of carbon monoxide in the exhaust syngas and an increase in a level of hydrogen in the exhaust syngas to generate the improved syngas.