Abstract:
Embodiments are described for a method of rendering an audio program by receiving, in a renderer of a playback system, the audio program and a target response representing desired characteristics of the playback environment, deriving a playback environment response based on characteristics of the playback environment, comparing the target response to the playback environment response to generate a set of correction settings, and applying the correction settings to the audio program so that the audio program is rendered according to the characteristics of the target response. The target response may be based on audio characteristics in a creation environment.
Abstract:
In some embodiments, methods for generating an object based audio program including screen-elated metadata indicative of at least one warping degree parameter for at least one audio object, or generating a speaker channel-based program including by warping audio content of an object based audio program to a degree determined at least in part by at least one warping degree parameter, or methods for decoding or rendering any such audio program. Other aspects are systems configured to perform such audio signal generation, decoding, or rendering, and audio processing units (e.g., decoders or encoders) including a buffer memory which stores at least one segment of any such audio program.
Abstract:
Improved tools for authoring and rendering audio reproduction data are provided. Some such authoring tools allow audio reproduction data to be generalized for a wide variety of reproduction environments. Audio reproduction data may be authored by creating metadata for audio objects. The metadata may be created with reference to speaker zones. During the rendering process, the audio reproduction data may be reproduced according to the reproduction speaker layout of a particular reproduction environment.
Abstract:
Audio perception in local proximity to visual cues is provided. A device includes a video display, first row of audio transducers, and second row of audio transducers. The first and second rows can be vertically disposed above and below the video display. An audio transducer of the first row and an audio transducer of the second row form a column to produce, in concert, an audible signal. The perceived emanation of the audible signal is from a plane of the video display (e.g., a location of a visual cue) by weighing outputs of the audio transducers of the column. In certain embodiments, the audio transducers are spaced farther apart at a periphery for increased fidelity in a center portion of the plane and less fidelity at the periphery.
Abstract:
Some disclosed methods involve multi-band bass management. Some such examples may involve applying multiple high-pass and low-pass filter frequencies for the purpose of bass input management. Some disclosed methods treat at least some low-frequency signals as audio objects that can be panned. Some disclosed methods involve panning low and high frequencies separately. Following high-pass rendering, a power audit may determine a low-frequency deficit factor that is to be reproduced by subwoofers or other low-frequency-capable loudspeakers.
Abstract:
Embodiments are described for an adaptive audio system that processes audio data comprising a number of independent monophonic audio streams. One or more of the streams has associated with it metadata that specifies whether the stream is a channel-based or object-based stream. Channel-based streams have rendering information encoded by means of channel name; and the object-based streams have location information encoded through location expressions encoded in the associated metadata. A codec packages the independent audio streams into a single serial bitstream that contains all of the audio data. This configuration allows for the sound to be rendered according to an allocentric frame of reference, in which the rendering location of a sound is based on the characteristics of the playback environment (e.g., room size, shape, etc.) to correspond to the mixer's intent. The object position metadata contains the appropriate allocentric frame of reference information required to play the sound correctly using the available speaker positions in a room that is set up to play the adaptive audio content.
Abstract:
Audio perception in local proximity to visual cues is provided. A device includes a video display, first row of audio transducers, and second row of audio transducers. The first and second rows can be vertically disposed above and below the video display. An audio transducer of the first row and an audio transducer of the second row form a column to produce, in concert, an audible signal. The perceived emanation of the audible signal is from a plane of the video display (e.g., a location of a visual cue) by weighing outputs of the audio transducers of the column. In certain embodiments, the audio transducers are spaced farther apart at a periphery for increased fidelity in a center portion of the plane and less fidelity at the periphery.
Abstract:
Theater designs including social media, and theater entrances configured to draw patrons into a main area of the theater including an entrance having a curved wall and curved walkway having a horizon drop-off for display of content related to a motion picture or other feature to be shown in the theater. The content may be interactive or otherwise linked to patrons passing a hallway including the curved wall. Spatialized sound corresponding to the video “moves” with objects in the video and with patrons as they traverse walkway.
Abstract:
Embodiments are described for an adaptive audio system that processes audio data comprising a number of independent monophonic audio streams. One or more of the streams has associated with it metadata that specifies whether the stream is a channel-based or object-based stream. Channel-based streams have rendering information encoded by means of channel name; and the object-based streams have location information encoded through location expressions encoded in the associated metadata. A codec packages the independent audio streams into a single serial bitstream that contains all of the audio data. This configuration allows for the sound to be rendered according to an allocentric frame of reference, in which the rendering location of a sound is based on the characteristics of the playback environment (e.g., room size, shape, etc.) to correspond to the mixer's intent. The object position metadata contains the appropriate allocentric frame of reference information required to play the sound correctly using the available speaker positions in a room that is set up to play the adaptive audio content.
Abstract:
Audio perception in local proximity to visual cues is provided. A device includes a video display, first row of audio transducers, and second row of audio transducers. The first and second rows can be vertically disposed above and below the video display. An audio transducer of the first row and an audio transducer of the second row form a column to produce, in concert, an audible signal. The perceived emanation of the audible signal is from a plane of the video display (e.g., a location of a visual cue) by weighing outputs of the audio transducers of the column In certain embodiments, the audio transducers are spaced farther apart at a periphery for increased fidelity in a center portion of the plane and less fidelity at the periphery.