Abstract:
A headset connector assembly that includes a connector plate, a casing, and electrical contact members is provided. The connector plate can have a first mating surface, a second mating surface, and at least two apertures existing between the first and the second mating surfaces. The casing can have a first side in contact with the first mating surface and a second side. The casing can include a protruding cavity member for each of the at least two apertures. Each protruding cavity member can extend from the first side and be constructed to fit within one of the at least two apertures. Each protruding cavity member can house an electrical contact member.
Abstract:
A headset connector assembly that includes a connector plate, a casing, and electrical contact members is provided. The connector plate can have a first mating surface, a second mating surface, and at least two apertures existing between the first and the second mating surfaces. The casing can have a first side in contact with the first mating surface and a second side. The casing can include a protruding cavity member for each of the at least two apertures. Each protruding cavity member can extend from the first side and be constructed to fit within one of the at least two apertures. Each protruding cavity member can house an electrical contact member.
Abstract:
A display window assembly is mounted in the opening of a bezel of a housing, and a force is exerted against the assembly by a suitable resilient element urging it outward through the opening. The assembly may be mounted on a support or frame, from which depends one or more tabs extending inwardly of the housing. At least one of the tabs is fastened with a fastener that extends from the exterior of the housing, through a portion other than the bezel and through a surface not generally facing the user when the user is viewing the display. The advancement/withdrawal direction of the fastener is not substantially normal to the display window. However, advancement/withdrawal of the fastener causes movement of the tab, and therefore of the assembly, in an adjustment direction substantially normal to the display window to adjust the position of the display window relative to the bezel.
Abstract:
Method and device relate to improved sensor configurations in a user device are disclosed. A device implements the improved sensor configurations includes a switch configured to detect a force applied by a user, one or more touch sensors configured to detect an angular position of the user input which are peripherally located relative to the switch, and a processor configured to generate a signal for performing a task selected from a plurality of predefined tasks in accordance with the force and the angular position of the user input.
Abstract:
Disclosed are systems and methods for mechanically reducing an amount of the skull material in a finished, molded part formed from amorphous alloy using an injection molding system. Skull material of molten amorphous alloy can be captured in a trap before molding such material. A cavity can be provided in the injection molding system to trap the skull material. For example, the cavity can be provided in the mold, the tip of the plunger rod, or in the transfer sleeve. Alternatively, mixing of molten amorphous alloy can be induced so that skull material is reduced before molding. A plunger and/or its tip can be used to induce mixing (e.g., systematic movement of plunger rod, or a shape of its tip). By minimizing the amount of skull material in the finished, molded part, the quality of the part is increased.
Abstract:
The embodiments described herein relate to BMG articles with high bulk having all dimensions greater than the critical dimension. Exemplary BMG article can include at least one bulk component and/or one or more fixation elements configured on surface of the bulk component or inserted into the bulk component. Other embodiments relate to methods of making the BMG articles by thermo-plastic-formation of BMG alloy materials.
Abstract:
An injection molding system and methods for improving performance of the same. The system includes a plunger rod and a melt zone that are provided in-line and on a vertical axis. The plunger rod is moved in a vertical direction through the melt zone to move molten material into a mold. The injection molding system can perform the melting and molding processes under a vacuum. Skull formation in molten material is reduced by providing an RF transparent sleeve in the melt zone and/or a skull trapping portion adjacent an inlet of the mold. It can also be controlled based on the melting unit. Vacuum evacuation can be reduced during part ejection by using a plunger seal, so that evacuation time between cycles is reduced.
Abstract:
Touch sensing systems comprising bulk-solidifying amorphous alloys and methods of making touch sensing arrays and electronic devices containing touch sensitive screens that include arrays containing bulk-solidifying amorphous alloys. The bulk-solidifying amorphous alloy substrates have select areas of crystalline and amorphous alloy providing for discrete areas of conductivity and resistivity.
Abstract:
Described herein is a feedstock including a core comprising BMG and a sheath attached the core. The sheath has a different physical property, a different chemical property or both from the core. Alternatively, the feedstock can include a sheath that encloses one or more core comprising BMG. The feedstock can be manufactured by attaching the sheath to the core, shot peening the core, etching the core, ion implanting the core, or applying a coating to the core, etc. The feedstock can be used to make a part by injection molding. The sheath can be used to adjust the composition of the core to reach the composition of the part.
Abstract:
Methods for creating sapphire windows are provided herein. In particular, one embodiment may take the form of a method of manufacturing sapphire windows. The method includes obtaining a polished sapphire wafer and applying decoration to the sapphire wafer. The method also includes cutting the sapphire wafer into discrete windows. In some embodiments, the cutting step comprises laser ablation of the sapphire.