Abstract:
A method provided in one embodiment includes receiving, at a first network element, a first data packet of a data flow, wherein the data flow is associated with a subscriber. The method further includes receiving subscriber information associated with the subscriber, and encapsulating the subscriber information with the first data packet to form an encapsulated data packet. The method still further includes determining a service chain including one or more services to which the encapsulated data packet is to be forwarded, and forwarding the encapsulated data packet to the service chain.
Abstract:
An example method is provided in one example embodiment and may include receiving a packet for a subscriber at a gateway, wherein the gateway includes a local policy anchor for interfacing with one or more policy servers and one or more classifiers for interfacing with one or more service chains, each service chain including one or more services accessible by the gateway; determining a service chain to receive the subscriber's packet; appending the subscriber's packet with a header, wherein the header includes, at least in part, identification information for the subscriber and an Internet Protocol (IP) address for the local policy anchor; and injecting the packet including the header into the service chain determined for the subscriber.
Abstract:
In an embodiment, a method is provided for enabling in-band data exchange between networks. The method can comprise receiving, by a first enveloping proxy located in the first network, at least one regular secure sockets layer (SSL) record for a SSL session established between a client and a server; receiving the data from a network element located in the first network; encoding the data into at least one custom SSL record; and transmitting the at least one regular SSL record and the at least one custom SSL record to an enveloping proxy. In another embodiment, a method can comprise receiving at least one regular secure sockets layer (SSL) record and at least one custom SSL record for a SSL session established between a client and a server; extracting the data from the at least one custom SSL; transmitting the at least one regular SSL record.
Abstract:
An example method for distributed service chaining is provided and includes receiving a packet belonging to a service chain in a distributed virtual switch (DVS) network environment, the packet includes a network service header (NSH) indicating a service path identifier identifying the service chain. The packet is provided to a virtual Ethernet module (VEM) connected to an agentless service node (SN) providing an edge service such as a server load balancer (SLB). The VEM associates a service path identifier corresponding to the service chain with a local identifier such as a virtual local area network (VLAN). The agentless SN returns the packet to the VEM for forwarding on the VLAN. Because the VLAN corresponds exactly to the service path and service chain, the packet is forwarded directly to the next node in the service chain. This can enable agentless SNs to efficiently provide a service chain for network traffic.
Abstract:
A method is provided in one example embodiment and includes receiving at a network element a packet associated with a flow and determining whether a flow cache of the network element includes an entry for the flow indicating a classification for the flow. The method further includes, if the network element flow cache does not include an entry for the flow, punting the packet over a default path to a classifying service function, in which the classifying service function classifies the flow and determines a control plane service function for handling the flow, and receiving from the classifying service function a service path identifier (“SPI”) of a service path leading to the determined control plane service function. The flow is subsequently offloaded from the classifying service function to the network element.
Abstract:
An example method for distributed service chaining is provided and includes receiving a packet belonging to a service chain in a distributed virtual switch (DVS) network environment, the packet includes a network service header (NSH) indicating a service path identifier identifying the service chain. The packet is provided to a virtual Ethernet module (VEM) connected to an agentless service node (SN) providing an edge service such as a server load balancer (SLB). The VEM associates a service path identifier corresponding to the service chain with a local identifier such as a virtual local area network (VLAN). The agentless SN returns the packet to the VEM for forwarding on the VLAN. Because the VLAN corresponds exactly to the service path and service chain, the packet is forwarded directly to the next node in the service chain. This can enable agentless SNs to efficiently provide a service chain for network traffic.
Abstract:
Particular embodiments described herein provide for a communication system that can be configured for receiving, at a network element, a flow offload decision for a first service node. The flow offload decision can include a portion of a service chain for processing a flow and updating next hop flow based routing information for the flow. A next hop in the flow can insert flow specific route information in its routing tables to bypass a packet forwarder serving the service that offloaded the flow in the reverse direction.
Abstract:
An example method for service node originated service chains in a network environment is provided and includes receiving a packet at a service node in a network environment that includes a plurality of service nodes and a central classifier, analyzing the packet for a service chain modification or a service chain initiation, classifying the packet at the service node to a new service chain based on the analysis, initiating the new service chain at the service node if the analysis indicates service chain initiation, and modifying an existing service chain for the packet to the new service chain if the analysis indicates service chain modification. In specific embodiments, the analysis includes applying classification logic specific to the service node. Some embodiments, service node attributes and order of service nodes in substantially all service chains configured in the network may be received from a central controller.
Abstract:
An example method for distributed service chaining in a network environment is provided and includes receiving a packet belonging to a service chain in a distributed virtual switch (DVS) network environment, wherein the packet includes a network service header (NSH) indicating a service path identifier identifying the service chain and a location of the packet on the service chain, evaluating a service forwarding table to determine a next service node based on the service path identifier and the location, with a plurality of different forwarding tables distributed across the DVS at a corresponding plurality of virtual Ethernet Modules (VEMs) associated with respective service nodes in the service chain, and forwarding the packet to the next service node, with substantially all services in the service chain provided sequentially to the packet in a single service loop on a service overlay.
Abstract:
A method is provided in one example embodiment and includes receiving at a network element a flow offload decision for a first service node that includes a portion of a service chain for processing a flow; recording the flow offload decision against the first service node at the network element; and propagating the flow offload decision backward on a service path to which the flow belongs if the first service node is hosted at the network element. Embodiments may also include propagating the flow offload decision backward on a service path to which the flow belongs if the flow offload decision is a propagated flow offload decision and the network element hosts a second service node that immediately precedes the service node on behalf of which the propagated flow offload decision was received and a flow offload decision has already been received by the network element from the second service node.