Abstract:
An example method for a programmable infrastructure gateway for enabling hybrid cloud services in a network environment is provided and includes receiving an instruction from a hybrid cloud application executing in a private cloud, interpreting the instruction according to a hybrid cloud application programming interface, and executing the interpreted instruction in a public cloud using a cloud adapter. The method is generally executed in the infrastructure gateway including a programmable integration framework allowing generation of various cloud adapters using a cloud adapter software development kit, the cloud adapter being generated and programmed to be compatible with a specific public cloud platform of the public cloud. In specific embodiments, identical copies of the infrastructure gateway can be provided to different cloud service providers who manage disparate public cloud platforms; each copy of the infrastructure gateway can be programmed differently to generate corresponding cloud adapters compatible with the respective public cloud platforms.
Abstract:
According to one aspect, a method includes an Intercloud Fabric Switch (ICS) included in a public cloud and an ICS cluster obtaining a packet, and determining if the packet is obtained from a site-to-site link that links the ICS to an enterprise datacenter. If the packet is obtained from the site-to-site link, it is determined whether the packet is an unknown unicast packet. If the packet is an unknown unicast packet, the packet is dropped, and if not, the packet is provided to an access link that links the ICS to a virtual machine. If the packet is not obtained from the site-to-site link, it is determined whether the packet is obtained from an inter-ICS link that allows the ICS to communicate with the ICS cluster. If the packet is obtained from the inter-ICS link, the packet is dropped if it is an unknown unicast packet.
Abstract:
An example method for a programmable infrastructure gateway for enabling hybrid cloud services in a network environment is provided and includes receiving an instruction from a hybrid cloud application executing in a private cloud, interpreting the instruction according to a hybrid cloud application programming interface, and executing the interpreted instruction in a public cloud using a cloud adapter. The method is generally executed in the infrastructure gateway including a programmable integration framework allowing generation of various cloud adapters using a cloud adapter software development kit, the cloud adapter being generated and programmed to be compatible with a specific public cloud platform of the public cloud. In specific embodiments, identical copies of the infrastructure gateway can be provided to different cloud service providers who manage disparate public cloud platforms; each copy of the infrastructure gateway can be programmed differently to generate corresponding cloud adapters compatible with the respective public cloud platforms.
Abstract:
According to one aspect, a method includes an Intercloud Fabric Switch (ICS) included in a public cloud and an ICS cluster obtaining a packet, and determining if the packet is obtained from a site-to-site link that links the ICS to an enterprise datacenter. If the packet is obtained from the site-to-site link, it is determined whether the packet is an unknown unicast packet. If the packet is an unknown unicast packet, the packet is dropped, and if not, the packet is provided to an access link that links the ICS to a virtual machine. If the packet is not obtained from the site-to-site link, it is determined whether the packet is obtained from an inter-ICS link that allows the ICS to communicate with the ICS cluster. If the packet is obtained from the inter-ICS link, the packet is dropped if it is an unknown unicast packet.
Abstract:
An example method for a programmable infrastructure gateway for enabling hybrid cloud services in a network environment is provided and includes receiving an instruction from a hybrid cloud application executing in a private cloud, interpreting the instruction according to a hybrid cloud application programming interface, and executing the interpreted instruction in a public cloud using a cloud adapter. The method is generally executed in the infrastructure gateway including a programmable integration framework allowing generation of various cloud adapters using a cloud adapter software development kit, the cloud adapter being generated and programmed to be compatible with a specific public cloud platform of the public cloud. In specific embodiments, identical copies of the infrastructure gateway can be provided to different cloud service providers who manage disparate public cloud platforms; each copy of the infrastructure gateway can be programmed differently to generate corresponding cloud adapters compatible with the respective public cloud platforms.
Abstract:
Presented herein are techniques useful in a network comprising a plurality of network nodes each configured to apply one or more service functions to traffic that passes through the respective network nodes. A network node receives packets encapsulated in a service header that includes information defining a variable set of context headers stacked into an association of metadata that is relevant to one or more service functions within a service path comprised of one or more network nodes. The network node interprets a forwarding state and a next-hop network node for the service path from the service header, and determines a service action or associated metadata from the set of context headers.
Abstract:
An example method for distributed service chaining is provided and includes receiving a packet belonging to a service chain in a distributed virtual switch (DVS) network environment, the packet includes a network service header (NSH) indicating a service path identifier identifying the service chain. The packet is provided to a virtual Ethernet module (VEM) connected to an agentless service node (SN) providing an edge service such as a server load balancer (SLB). The VEM associates a service path identifier corresponding to the service chain with a local identifier such as a virtual local area network (VLAN). The agentless SN returns the packet to the VEM for forwarding on the VLAN. Because the VLAN corresponds exactly to the service path and service chain, the packet is forwarded directly to the next node in the service chain. This can enable agentless SNs to efficiently provide a service chain for network traffic.
Abstract:
An example method for distributed service chaining is provided and includes receiving a packet belonging to a service chain in a distributed virtual switch (DVS) network environment, the packet includes a network service header (NSH) indicating a service path identifier identifying the service chain. The packet is provided to a virtual Ethernet module (VEM) connected to an agentless service node (SN) providing an edge service such as a server load balancer (SLB). The VEM associates a service path identifier corresponding to the service chain with a local identifier such as a virtual local area network (VLAN). The agentless SN returns the packet to the VEM for forwarding on the VLAN. Because the VLAN corresponds exactly to the service path and service chain, the packet is forwarded directly to the next node in the service chain. This can enable agentless SNs to efficiently provide a service chain for network traffic.
Abstract:
An example method for service node originated service chains in a network environment is provided and includes receiving a packet at a service node in a network environment that includes a plurality of service nodes and a central classifier, analyzing the packet for a service chain modification or a service chain initiation, classifying the packet at the service node to a new service chain based on the analysis, initiating the new service chain at the service node if the analysis indicates service chain initiation, and modifying an existing service chain for the packet to the new service chain if the analysis indicates service chain modification. In specific embodiments, the analysis includes applying classification logic specific to the service node. Some embodiments, service node attributes and order of service nodes in substantially all service chains configured in the network may be received from a central controller.
Abstract:
An example method for distributed service chaining in a network environment is provided and includes receiving a packet belonging to a service chain in a distributed virtual switch (DVS) network environment, wherein the packet includes a network service header (NSH) indicating a service path identifier identifying the service chain and a location of the packet on the service chain, evaluating a service forwarding table to determine a next service node based on the service path identifier and the location, with a plurality of different forwarding tables distributed across the DVS at a corresponding plurality of virtual Ethernet Modules (VEMs) associated with respective service nodes in the service chain, and forwarding the packet to the next service node, with substantially all services in the service chain provided sequentially to the packet in a single service loop on a service overlay.