Abstract:
The subject disclosure relates to improved integrated connector module (ICM) designs for Ethernet applications. Some aspects provide an improved integrated connector module transformer (ICMt), including a wafer configured to hold a plurality of toroid elements, wherein the wafer is comprised of two or more mechanically coupled wafer portions. The ICMt can include one or more Electro Magnetic Interference (EMI) fingers that are configured to contact a ground pad of a printed circuit board (PCB) in order to provide a low-inductance connection between the ICMt and the ground pad of the PCB.
Abstract:
An apparatus may be provided. The apparatus may comprise a circuit board. In addition, the apparatus may comprise an integrated connector mounted to the circuit board. A choke, external to the integrated connector, may be included in the apparatus. The choke may be electrically connected to the integrated connector through the circuit board.
Abstract:
The subject disclosure relates improved common mode choke (CMC) and integrated connector module (ICM) designs for Ethernet applications. Some aspects provide an improved CMC component, including an upper chassis element having a first plurality of comb structures vertically protruding from an edge of the upper chassis element, and a lower chassis element comprising a second plurality of comb structures vertically protruding from an edge of the lower chassis element, the second plurality of comb structures configured to interlock with the first plurality of comb structures to form an enclosure when the upper chassis element is mechanically coupled with the lower chassis element.
Abstract:
A chassis-mounted electronic device includes a conductive chassis, an upper EMI gasket, and a lower EMI gasket. An upper chassis and a lower chassis of the conductive chassis are coupled to form an interior of the chassis housing an electronic device. The upper EMI gasket is attached to the upper chassis, and resiliently contacts a portion of the electronic device. The lower EMI gasket is attached to the lower chassis, and resiliently contacts a different portion of the electronic device. The upper and lower EMI gaskets include perforations to allow cooling air through the EMI gaskets and into the interior of the chassis. The conductive chassis, the upper EMI gasket, and the lower EMI gasket provide EMI shielding for the electronic device.
Abstract:
A chassis-mounted electronic device includes a chassis, an upper EMI gasket, and a lower EMI gasket is provided. The chassis, including an upper chassis and a lower chassis, is constructed from a conductive sheet with a first thickness. The upper chassis and the lower chassis are coupled to form an interior of the chassis housing an electronic device. The upper EMI gasket is attached to the upper chassis, and is thinner than the upper chassis. The lower EMI gasket is attached to the lower chassis, and is also thinner than the lower chassis. The upper and lower EMI gaskets include perforations to allow cooling air through the EMI gaskets and into the interior of the chassis. Both the upper EMI gasket and the lower EMI gasket are configured to resiliently contact a portion of the electronic device to provide EMI shielding for the electronic device.
Abstract:
In one embodiment, an apparatus includes a connector plug for attachment to a single pair Ethernet cable comprising a pair of conductors, and configured for being received in a connector receptacle. The connector plug includes a first end for receiving the single pair Ethernet cable and a second end having a pair of contacts, each of the contacts comprising a receptacle contact interface, a conductor interface, and an extension to provide an increased width between conductor gripping prongs at the conductor interface while maintaining a consistent spacing between the pair of contacts at the receptacle contact interface with connector plugs configured to mate with different gauge cables.
Abstract:
In one embodiment, an apparatus includes a connector plug for attachment to a single pair Ethernet cable comprising a pair of conductors, and configured for being received in a connector receptacle. The connector plug includes a first end for receiving the single pair Ethernet cable and a second end having a pair of contacts, each of the contacts comprising a receptacle contact interface, a conductor interface, and an extension to provide an increased width between conductor gripping prongs at the conductor interface while maintaining a consistent spacing between the pair of contacts at the receptacle contact interface with connector plugs configured to mate with different gauge cables.
Abstract:
A network connector assembly with an upper board member includes one or more upper coupling pins and a lower board member includes one or more lower coupling pins. The upper board member and lower board member each a plurality of sets of contact pins disposed on a respective top surface. A housing can be disposable over the upper board member and the lower board member forming one or more network couplers. Each of the one or more network couplers configured to receive one set of contact pins.
Abstract:
Disclosed herein is a technique for a connection from an Ethernet physical transceiver (PHY) to an integrated connector module (ICM) where the connection and the ICM lack a common mode choke. The ICM can include a magnetic coupler that directly couples an Ethernet jack and the PHY.