Abstract:
An ambulatory monitoring device includes a sensor to monitor a physiological signal and a battery power source. The device also includes a wireless receiver adapted to monitor a first frequency band having frequencies below 1 MHz and configured to detect and receive, using less than 10 micro-amps of current from the battery power source when operating, wireless communications within the first frequency band from a remote device at least one meter away. The device further includes a wireless transmitter adapted to transmit—after receipt from the remote device of a first wireless communication within the first frequency band that includes an invitation for further communication—a second wireless communication in a second frequency band having frequencies above 10 MHz, the second wireless communication comprising data indicative of the physiological signal as sensed by the sensor.
Abstract:
A quick-change vise including a T-shaped clamp extending from within a jaw member which engages a T-shaped channel in a jaw blank to releasably secure the jaw blank to the jaw member. The jaw blank may be provided with a parallel bar or angle parallel to provided horizontal or angled supporting surfaces to a workpiece held in the vise. The jaw blank may be positioned in reversible positions on the clamp. Additionally, the jaw blank may be made of an extrudable metal such as aluminum.
Abstract:
Implantable medical device systems and methods for measuring a body parameter utilizing an implantable functional pressure sensor and a fixed reference sensor, wherein the reference sensor compensates for drift of all other components in the measurement system other than the functional sensor. The reference sensor provides a basis for comparison to determine if and to what extent the electronic components, for example, have drifted over time, and thus provides a basis for correcting functional measurements and improving long term measurement accuracy.
Abstract:
A sensing circuit for a cardiac stimulator which can adapt to the use therewith of either bipolar leads or unipolar leads without the need for telemetric programming of a switch internal to the implanted pacemaker. If a unipolar lead is plugged into the terminal receptacle of the pacer at the time of implant, the pacer will sense R-wave activity and other artifacts between a distal tip electrode and the metal body of the pacemaker, but if a bipolar lead is plugged into that same receptacle at the time of implant, the pacer will sense such artifacts between a tip electrode and a ring electrode spaced a predetermined short distance proximally of the tip electrode along the surface of the lead body.
Abstract:
An electrical pacer device which responds to cardiac demand so as to alter the cardiac output in a fashion to satisfy that demand. Changes in the fundamental period of the atrial electrical cycle are detected and averaged over a predetermined time interval and the resulting control signal is used to raise and lower the ventricular heart rate to increase and decrease the aforesaid cardiac output. At the same time, means are provided for continuously driving the ventricular rate toward a predetermined lower rate (the at rest rate) on a time cycle which is significantly longer than the above-mentioned predetermined time interval.
Abstract:
An ambulatory monitoring device includes a sensor to monitor a physiological signal and a battery power source. The device also includes a wireless receiver adapted to monitor a first frequency band having frequencies below 1 MHz and configured to detect and receive, using less than 10 micro-amps of current from the battery power source when operating, wireless communications within the first frequency band from a remote device at least one meter away. The device further includes a wireless transmitter adapted to transmit—after receipt from the remote device of a first wireless communication within the first frequency band that includes an invitation for further communication—a second wireless communication in a second frequency band having frequencies above 10 MHz, the second wireless communication comprising data indicative of the physiological signal as sensed by the sensor.
Abstract:
An ambulatory monitoring device includes a sensor to monitor a physiological signal and a battery power source. The device also includes a wireless receiver adapted to monitor a first frequency band having frequencies below 1 MHz and configured to detect and receive, using less than 10 micro-amps of current from the battery power source when operating, wireless communications within the first frequency band from a remote device at least one meter away. The device further includes a wireless transmitter adapted to transmit—after receipt from the remote device of a first wireless communication within the first frequency band that includes an invitation for further communication—a second wireless communication in a second frequency band having frequencies above 10 MHz, the second wireless communication comprising data indicative of the physiological signal as sensed by the sensor.
Abstract:
An ambulatory monitoring device includes a sensor to monitor a physiological signal and a battery power source. The device also includes a wireless receiver adapted to monitor a first frequency band having frequencies below 1 MHz and configured to detect and receive, using less than 10 micro-amps of current from the battery power source when operating, wireless communications within the first frequency band from a remote device at least one meter away. The device further includes a wireless transmitter adapted to transmit—after receipt from the remote device of a first wireless communication within the first frequency band that includes an invitation for further communication—a second wireless communication in a second frequency band having frequencies above 10 MHz, the second wireless communication comprising data indicative of the physiological signal as sensed by the sensor.
Abstract:
A quick-change vise including a T-shaped clamp extending from within a jaw member which engages a T-shaped channel in a jaw blank to releasably secure the jaw blank to the jaw member. The jaw blank may be provided with a parallel bar or angle parallel to provide horizontal or angled supporting surfaces to a workpiece held in the vise. The jaw blank may be positioned in reversible positions on the clamp. Additionally, the jaw blank may be made of an extrudable metal such as aluminum.
Abstract:
A telemetry system includes a transmitter, which is either placed in the vagina or is implanted in the vulvular or vaginal tissue, and a receiver. The transmitter is capable of measuring physiological parameters which are indicative or predictive of the occurrence of estrus. These parameters may include but are not limited to tissue impedance, temperature and activity of the animal. This provides a pulsed method of measuring impedance of vulvular or vaginal tissue which enhances the marketability of such a device by reducing its size, weight and complexity without sacrificing accuracy or reliability. Data telemetered from this device is preferably collected by a computer and automatically analyzed to provide a report to the farm manager as to which animals are in estrus or are expected to be in estrus at a given time.