Abstract:
Some embodiments provide a method for performing a block cryptographic operation that includes a plurality of rounds. The method receives a message that includes several blocks. The method selects a set of the blocks. The set has a particular number of blocks. The method applies a cryptographic operation to the selected set of blocks. A particular round of the cryptographic operation for a first block in the set is performed after a later round than the particular round for a second block in the set, while a different particular round for the first block is performed before an earlier round than the different particular round for the second block. In some embodiments, at least two rounds for the first block are performed one after the other without any intervening rounds for any other blocks in the set.
Abstract:
The fake cryptographic layer obfuscation technique can be used to lure an attacker into expending reverse engineering efforts on sections of code the attacker would normally ignore. To do this the obfuscation technique can identify sections of code that are likely to be of lesser interest to the attacker and disguise them as higher value sections. This can be achieved by transforming a lower value section of code to include code patterns, constants, or other characteristics known to exist in sections of code of higher value, such as cryptographic routines. To transform a code section, the obfuscation technique can use one or more program modifications including control flow modifications, constant value adjustments to simulate well-known cryptographic scalars, buffer extensions, fake characteristic table insertion, debug-like information insertion, derivation function-code generation linking, and/or cryptographic algorithm specific instruction insertion.
Abstract:
Some embodiments provide for an improved method for performing AES cryptographic operations. The method applies a look up table operation that includes several operations embedded within look up tables. The embedded operations include a permutation operation to permute several bytes of AES state, a multiplication operation to apply a next round's protection to the AES state, an affine function and an inverse affine function to conceal the multiplication operation, and an inverse permutation operation to remove a previous round's protection. Some embodiments provide for an optimized method for efficiently performing such protected AES operations. The method alternates rounds of AES processing between software processing (e.g. processing by a CPU, performed according to software instructions) and hardware processing (e.g. processing by cryptographic ASIC).
Abstract:
A method and an apparatus for receiving a first source code having a code block to update the first source code with multiple copies of the code block to protect against correlation attacks are described. The code block can perform one or more operations for execution based on the first source code. The operations can be performed via a random one of the copies of the code block. A second source code based on the updated first source code can be generated to be executed by a processor to produce an identical result as the first source code.
Abstract:
Data items such as files or database records associated with particular applications (such as messaging applications and other applications) can be stored in one or more remote locations, such as a cloud storage system, and synchronized with other devices. The remote storage can be configured such that each application executing on a client device can only view data items stored at the remote location to which the application has permission to access. An access manager on each client device enforces application specific access policies. Storage at the remote location can be secured for each application associated with a user or user account, for example, using isolated containers. The cloud storage of data can be anonymized and anonymous group data can be stored in the cloud storage.
Abstract:
Techniques are disclosed relating to protecting branch prediction information. In various embodiments, an integrated circuit includes branch prediction logic having a table that maintains a plurality of entries storing encrypted target address information for branch instructions. The branch prediction logic is configured to receive machine context information for a branch instruction having a target address being predicted by the branch prediction logic, the machine context information including a program counter associated with the branch instruction. The branch prediction logic is configured to use the machine context information to decrypt encrypted target address information stored in one of the plurality of entries identified based on the program counter. In some embodiments, the branch prediction logic decrypts the encrypted target address information by performing a cipher to encrypt the machine context information and performing a Boolean exclusive-OR operation of the encrypted machine context information and the encrypted target address information.
Abstract:
The disclosed hash and message padding functions are based on the permutation composition problem. To compute a hash of a message using permutation composition based hashing, the message is split into equal size blocks. For each block, a permutation composition value is computed. The block permutation composition values are then combined through composition to generate an overall permutation composition value. The hash of the message is then based on the overall permutation composition value. To pad a message using permutation composition based padding, the message is split into equal size blocks. For each block, a permutation composition value is computed and the permutation composition value is added to the block. The padded blocks are then recombined to generate the padded message.
Abstract:
Methods, media, and systems for, in one embodiment, protecting one or more keys in an encryption and/or decryption process can use precomputed values in the process such that at least a portion of the one or more keys is not used or exposed in the process. In one example of a method, internal states of an AES encryption process are saved for use in a counter mode stream cipher operation in which the key used in the AES encryption process is not exposed or used.
Abstract:
Some embodiments provide a method for performing an iterative block cipher. Line rotations and column rotations are combined to have a diversity of representations of the AES state. These protections can be performed either in static mode where the rotations are directly included in the code and the tables or in dynamic mode where the rotations are chosen randomly at execution time, depending on some entropic context variables. The two modes can also be advantageously combined together.
Abstract:
The disclosed hash and message padding functions are based on the permutation composition problem. To compute a hash of a message using permutation composition based hashing, the message is split into equal size blocks. For each block, a permutation composition value is computed. The block permutation composition values are then combined through composition to generate an overall permutation composition value. The hash of the message is then based on the overall permutation composition value. To pad a message using permutation composition based padding, the message is split into equal size blocks. For each block, a permutation composition value is computed and the permutation composition value is added to the block. The padded blocks are then recombined to generate the padded message.