Abstract:
Embodiments described herein enable the generation of cryptographic material for ranging operations in a manner that reduces and obfuscates potential correlations between leaked and secret information. One embodiment provides for an apparatus including a ranging module having one or more ranging sensors. The ranging module is coupled to a secure processing system through a hardware interface to receive at least one encrypted ranging session key, the ranging module to decrypt the at least one encrypted ranging session key to generate a ranging session key, generate a sparse ranging input, derive a message session key based on the ranging session key, and derive a derived ranging key via a key derivation cascade applied to the message session key and the sparse ranging input, the derived ranging key to encrypt data transmitted during a ranging session.
Abstract:
Some embodiments provide a method for performing an iterative block cipher. Line rotations and column rotations are combined to have a diversity of representations of the AES state. These protections can be performed either in static mode where the rotations are directly included in the code and the tables or in dynamic mode where the rotations are chosen randomly at execution time, depending on some entropic context variables. The two modes can also be advantageously combined together.
Abstract:
Some embodiments provide a method for performing a cryptographic process. The method receives first and second cipher keys. The method generates a set of subkeys corresponding to each of the first and second cipher keys. The set of subkeys for the first cipher key is dependent on the first cipher key and the second cipher key. The method performs the cryptographic process by using the generated sets of subkeys.
Abstract:
Embodiments described herein enable the generation of cryptographic material for ranging operations in a manner that reduces and obfuscates potential correlations between leaked and secret information. One embodiment provides for an apparatus including a ranging module having one or more ranging sensors. The ranging module is coupled to a secure processing system through a hardware interface to receive at least one encrypted ranging session key, the ranging module to decrypt the at least one encrypted ranging session key to generate a ranging session key, generate a sparse ranging input, derive a message session key based on the ranging session key, and derive a derived ranging key via a key derivation cascade applied to the message session key and the sparse ranging input, the derived ranging key to encrypt data transmitted during a ranging session.
Abstract:
Some embodiments provide a method for performing a cryptographic process. The method receives first and second cipher keys. The method generates a set of subkeys corresponding to each of the first and second cipher keys. The set of subkeys for the first cipher key is dependent on the first cipher key and the second cipher key. The method performs the cryptographic process by using the generated sets of subkeys.
Abstract:
The fake cryptographic layer obfuscation technique can be used to lure an attacker into expending reverse engineering efforts on sections of code the attacker would normally ignore. To do this the obfuscation technique can identify sections of code that are likely to be of lesser interest to the attacker and disguise them as higher value sections. This can be achieved by transforming a lower value section of code to include code patterns, constants, or other characteristics known to exist in sections of code of higher value, such as cryptographic routines. To transform a code section, the obfuscation technique can use one or more program modifications including control flow modifications, constant value adjustments to simulate well-known cryptographic scalars, buffer extensions, fake characteristic table insertion, debug-like information insertion, derivation function-code generation linking, and/or cryptographic algorithm specific instruction insertion.
Abstract:
Methods, media, and systems for, in one embodiment, protecting one or more keys in an encryption and/or decryption process can use precomputed values in the process such that at least a portion of the one or more keys is not used or exposed in the process. In one example of a method, internal states of an AES encryption process are saved for use in a counter mode stream cipher operation in which the key used in the AES encryption process is not exposed or used.
Abstract:
Methods, media, and systems for, in one embodiment, protecting one or more keys in an encryption and/or decryption process can use precomputed values in the process such that at least a portion of the one or more keys is not used or exposed in the process. In one example of a method, internal states of an AES encryption process are saved for use in a counter mode stream cipher operation in which the key used in the AES encryption process is not exposed or used.
Abstract:
A method and an apparatus that provide rewriting code to dynamically mask program data statically embedded in a first code are described. The program data can be used in multiple instructions in the first code. A code location (e.g. an optimal code location) in the first code can be determined for injecting the rewriting code. The code location may be included in two or more execution paths of first code. Each execution path can have at least one of the instructions using the program data. A second code may be generated based on the first code inserted with the rewriting code at the optimal code location. The second code can include instructions using the program data dynamically masked by the rewriting code. When executed by a processor, the first code and the second code can generate identical results.
Abstract:
Embodiments described herein enable the generation of cryptographic material for ranging operations in a manner that reduces and obfuscates potential correlations between leaked and secret information. One embodiment provides for an apparatus including a ranging module having one or more ranging sensors. The ranging module is coupled to a secure processing system through a hardware interface to receive at least one encrypted ranging session key, the ranging module to decrypt the at least one encrypted ranging session key to generate a ranging session key, generate a sparse ranging input, derive a message session key based on the ranging session key, and derive a derived ranging key via a key derivation cascade applied to the message session key and the sparse ranging input, the derived ranging key to encrypt data transmitted during a ranging session.