Abstract:
A location-aware device detects if a personal or point of interest region has been entered or exited and a current context of the device. In response, an operating mode is selected based on the region and a current context of the device. The operating mode is configurable by a user, including setting geofence parameters, context parameters and operating mode parameters.
Abstract:
Private and secure autocomplete suggestions are enabled based on a user contacts database, even when an application has not been granted access to the user contacts database. A keyboard process can receive and display suggestions based on input provided via the keyboard. The suggestions are generated based on a contacts database of a user. The suggestions are generated without exposing the contacts database to the application. Suggestions are then displayed to the user without exposing the suggestions to the application. Once a suggestion is selected by a user, the selected suggestion is provided to the application for insertion into a text field.
Abstract:
Private and secure autocomplete suggestions are enabled based on a user contacts database, even when an application has not been granted access to the user contacts database. A keyboard process can receive and display suggestions based on input provided via the keyboard. The suggestions are generated based on a contacts database of a user. The suggestions are generated without exposing the contacts database to the application. Suggestions are then displayed to the user without exposing the suggestions to the application. Once a suggestion is selected by a user, the selected suggestion is provided to the application for insertion into a text field.
Abstract:
Embodiments described herein provide a software-based privacy indicator for a camera and microphone that focuses not purely on hardware status (e.g., on or off), but on whether potentially private data is flowing to the system or an application. If based purely on hardware status, the indicator for an electronic device may be shown in scenarios where no data actually flows to the system or applications. The privacy indicator will be enabled if any camera or microphone data is relayed to the operating system or an application that is executed via the operating system. When the device uses the microphone and camera to capture environmental metadata about the surroundings of the device without providing any audio samples, images, or video frames to the system or an application, the privacy indicator will not be enabled.
Abstract:
Reduced resolution location determination for improved anonymity of a user location is disclosed. In some implementations, a first location of a computing device operating in a geographic area is determined. A population density of the geographic area is estimated. A grid overlay is generated, including a number of cells based on the estimated population density. Using the grid overlay, a second location is generated for the computing device that is less precise than the first location. The less precise second location can be used in a local search or other application to improve the anonymity of the user location.
Abstract:
Systems, methods, and program products for determining a location of a mobile device using a location application programming interface (API) are described. A mobile device can receive an input requesting the mobile device to monitor entry into and exit from a significant location. The mobile device can call a start-monitoring instance function of an object of a location manager class as declared in the API to start monitoring, and call a stop-monitoring instance function of the object as declared in the API to stop monitoring. The mobile device can store the entry and exit, or provide a record of the entry or exit to a function that is conformant to the API for performing various tasks.
Abstract:
Reduced resolution location determination for improved anonymity of a user location is disclosed. In some implementations, a first location of a computing device operating in a geographic area is determined. A population density of the geographic area is estimated. A grid overlay is generated, including a number of cells based on the estimated population density. Using the grid overlay, a second location is generated for the computing device that is less precise than the first location. The less precise second location can be used in a local search or other application to improve the anonymity of the user location.
Abstract:
Systems, methods, and computer program products for determining the location and direction of travel of a mobile device using map vector constraints is disclosed.
Abstract:
Reduced resolution location determination for improved anonymity of a user location is disclosed. In some implementations, a first location of a computing device operating in a geographic area is determined. A population density of the geographic area is estimated. A grid overlay is generated, including a number of cells based on the estimated population density. Using the grid overlay, a second location is generated for the computing device that is less precise than the first location. The less precise second location can be used in a local search or other application to improve the anonymity of the user location.
Abstract:
Among other things, we describe a method that includes receiving, on a mobile device, an indication that an application executing on the mobile device has entered a background state, receiving, from the application, a value indicating a condition for providing location data to the application, disabling a resource associated with the application, while the resource associated with the application is disabled, storing location data received from a location system of the mobile device, and when the condition indicated by the value is met, enabling the resource associated with the application, and providing the stored location data to the application.