Abstract:
An electronic device may be provided with shared antenna structures that can be used to form both a near-field-communications antenna such as a loop antenna and a non-near-field communications antenna such as an inverted-F antenna. The antenna structures may include conductive structures such as metal traces on printed circuits or other dielectric substrates, internal metal housing structures, or other conductive electronic device housing structures. A main resonating element arm may be separated from an antenna ground by an opening. A non-near-field communications antenna return path and antenna feed path may span the opening. A balun may have first and second electromagnetically coupled inductors. The second inductor may have terminals coupled across differential signal terminals in a near-field communications transceiver. The first inductor may form part of the near-field communications loop antenna.
Abstract:
An electronic device may have wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from conductive housing structures running along the edges of a device. The antenna may have a pair of switchable return paths that bridge a slot between the antenna resonating element and an antenna ground. An adjustable component and a feed may be coupled in parallel across the slot. The adjustable component may switch a capacitor into use or out of use and the return paths may be selectively opened and closed to compensate for antenna loading due to the presence of external objects near the electronic device.
Abstract:
Damage to conductive material that serves as bridging connections between conductive structures within an electronic device may result in deficiencies in radio-frequency (RF) and other wireless communications. A test system for testing device structures under test is provided. Device structures under test may include substrates and a conductive material between the substrates. The test system may include a test fixture for increasing tensile or compressive stress on the device structures under test to evaluate the resilience of the conductive material. The test system may also include a test unit for transmitting RF test signals and receiving test data from the device structures under test. The received test data may include scattered parameter measurements from the device structures under test that may be used to determine if the device structures under test meet desired RF performance criteria.
Abstract:
An electronic device may include a conductive housing and an antenna. The antenna may include an arm formed from a first segment of the housing. A gap may separate the first segment from a second segment. Respective first and second slots may separate an antenna ground from the first and second segments. The antenna may have a first positive antenna feed terminal on the first segment and a second positive antenna feed terminal on the second segment. A transmission line may include a signal conductor having a first branch coupled to the first positive antenna feed terminal and a second branch coupled to the second positive antenna feed terminal. A switch may be interposed on the second branch for switching the antenna between a first mode in which the second slot is directly fed and a second mode in which the second segment is indirectly fed by the first segment.
Abstract:
An electronic device may include antennas, a ground, and a housing. First and second gaps in the housing may define a segment that forms a resonating element for a first antenna. First, second, third, and fourth antenna feeds may be coupled between the segment and ground. Control circuitry may control adjustable components to place the device in first, second, third, or fourth modes. In the first and second modes, the first and fourth feeds convey signals at the same frequency using a multiple-input and multiple-output scheme while the second and third feeds are inactive. In the third mode, the second feed is active and the first, third, and fourth feeds are inactive. In the fourth mode, the third feed is active and the first, second, and fourth antenna feeds are inactive. Isolating return paths may be coupled between the segment and ground in the first and second modes.
Abstract:
An electronic device may include a conductive housing and an antenna. The antenna may include an arm formed from a first segment of the housing. A gap may separate the first segment from a second segment. Respective first and second slots may separate an antenna ground from the first and second segments. The antenna may have a first positive antenna feed terminal on the first segment and a second positive antenna feed terminal on the second segment. A transmission line may include a signal conductor having a first branch coupled to the first positive antenna feed terminal and a second branch coupled to the second positive antenna feed terminal. A switch may be interposed on the second branch for switching the antenna between a first mode in which the second slot is directly fed and a second mode in which the second segment is indirectly fed by the first segment.
Abstract:
An electronic device may have wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from peripheral conductive structures running along the edges of a device housing. Elongated conductive members may longitudinally divide openings between the peripheral conductive housing structures and the ground. The elongated conductive members may extend from an internal ground to outer ends of the elongated conductive members that are located adjacent to the gaps. Transmission lines may extend along the elongated conductive members to antenna feeds at the outer ends. The elongated conductive members may form open slots that serve as slot antenna resonating elements for the antenna.
Abstract:
An electronic device may have wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from conductive housing structures running along the edges of a device. The antenna may have a pair of switchable return paths that bridge a slot between the antenna resonating element and an antenna ground. An adjustable component and a feed may be coupled in parallel across the slot. The adjustable component may switch a capacitor into use or out of use and the return paths may be selectively opened and closed to compensate for antenna loading due to the presence of external objects near the electronic device.
Abstract:
An electronic device may have wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from conductive housing structures running along the edges of a device. The antenna may have a pair of switchable return paths that bridge a slot between the antenna resonating element and an antenna ground. An adjustable component and a feed may be coupled in parallel across the slot. The adjustable component may switch a capacitor into use or out of use and the return paths may be selectively opened and closed to compensate for antenna loading due to the presence of external objects near the electronic device.
Abstract:
An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas. The antennas may include cellular telephone antennas, wireless local area network antennas, antenna structures for receiving satellite navigation system signals, and other antennas. An antenna may have an antenna resonating element such as an inverted-F antenna resonating element. The inverted-F antenna resonating element may have an inverted-F antenna resonating element arm formed from metal traces on a flexible printed circuit. The flexible printed circuit may be soldered to an antenna grounding clip. A screw may attach the clip, a speaker tab, a connector bracket, and other metal structures to a metal device housing that serves as ground for the antenna. The screw may be isolated from the antenna grounding clip and the other metal structures by an insulating structure such as an insulating gasket.