Abstract:
In one set of embodiments, one or more wireless stations operate to configure Neighbor Awareness Networking (NAN)—direct communication with neighboring wireless stations, i.e., direct communication between the wireless stations without utilizing an intermediate access point. Embodiments of the disclosure relate to reciprocating service between two or more wireless stations. The reciprocating service embodiments described herein provide a mechanism through which devices can participate in a same service instant.
Abstract:
In one set of embodiments, one or more client stations operate to configure Neighbor Awareness Networking (NAN)—direct communication with neighboring client stations, i.e., direct communication between the client stations without utilizing an intermediate access point. Embodiments of the disclosure relate to NAN datapath scheduling and NAN pre-datapath operation setup and scheduling. The NAN datapath embodiments described herein provide a mechanism through which devices can communicate and provide services. Aspects of the datapath development include datapath scheduling, including datapath setup and scheduling attributes, as well as pre-datapath operation triggering and scheduling. Scheduling may include determination of a type of datapath, including paging and synchronized datapaths. NAN data cluster base schedules may be scheduled as equal-sets or subsets of datapath schedules. The datapath model may be implemented for unicast and multicast communication between client stations.
Abstract:
An apparatus and methods are provided for opportunistically conducting data communications on multiple wireless channels. In these methods, a device is engaged in data communications with a second device and receives a conflicting communication demand requiring action on one or more channels other than the data-communication channel (e.g., to conduct a channel scan, to issue or receive a beacon). The device arranges a schedule of channel switches to satisfy the communication demand and advises the second device of the schedule, and may explicitly invite the second device to implement the schedule. To the extent the second device does so, the data communications continue on the other channels. The devices may be participating in a synchronized peer-to-peer communication environment that requires their attendance on the data-communication channel and that is not associated with the other channels.
Abstract:
An electronic device receives a request for access to the infrastructure network (and, more generally, a ‘resource’) from the other electronic device via a peer-to-peer link. In response to the request, the electronic device determines that it has access to the infrastructure network, and provides a response to the other electronic device via the peer-to-peer link indicating that the electronic device has access to the infrastructure network. Then, the electronic device establishes secure communication with the other electronic device, and provides access information to the other electronic device via the peer-to-peer link using the secure communication. This access information facilitates access to the infrastructure network.