Abstract:
An electronic device may be provided with wireless circuitry. Control circuitry may be used to adjust the wireless circuitry. The wireless circuitry may include antennas that are tuned, adjustable impedance matching circuitry, antenna port selection circuitry, and adjustable transceiver circuitry. Wireless circuit adjustments may be made by ascertaining a current usage scenario for the electronic device based on sensor data, information from cellular base station equipment or other external equipment, signal-to-noise ratio information or other signal information, antenna impedance measurements, and other information about the operation of the electronic device.
Abstract:
Electronic devices may include antenna structures. The antenna structures may form an antenna having first and second feeds at different locations. A first transceiver may be coupled to the first feed using a first circuit. A second transceiver may be coupled to the second feed using a second circuit. The first and second feeds may be isolated from each other using the first and second circuits. The second circuit may have a notch filter that isolates the second feed from the first feed at operating frequencies associated with the first transceiver. The first circuit may include an adjustable component such as an adjustable capacitor. The adjustable component may be placed in different states depending on the mode of operation of the second transceiver to ensure that the first feed is isolated from the second feed.
Abstract:
An electronic device may be provided with an antenna module. A phased antenna array of dielectric resonator antennas may be disposed within the antenna module. The dielectric resonator antennas may include dielectric columns excited by feed probes. A flexible printed circuit may include transmission lines coupled to the feed probes. The flexible printed circuit may have a first end coupled to the antenna module and extending towards peripheral conductive housing structures forming an additional antenna and a second end coupled to transceiver circuitry. Ground traces on the flexible printed circuit may be shorted to ground structures at the first and second ends to improve the antenna efficiency of the additional antenna. The flexible printed circuit may include an elongated slot with overlapping conductive structures and laterally surrounded by a fence of conductive vias to improve the flexibility of the flexible printed circuit while providing satisfactory antenna performance.
Abstract:
A radio frequency device has a multifunctional tuner that stores measurements of reflection coefficient parameter in a register. The radio frequency device also has a transceiver that has a transmitter. The transceiver may detect a transmitter signal from the transmitter to an antenna in an initial tuning state and then determine whether the transmitter signal is stable. In response to the transmitter signal being stable, the transceiver may measuring the reflection coefficient parameters at the multifunctional tuner. Furthermore, the radio frequency device has a baseband controller that has a memory to store instructions and a processor to execute the instructions. The instructions cause the processor to determine an antenna impedance based on the reflection coefficient parameters, and in response to determining that the antenna impedance is greater than or less than a threshold antenna impedance, iteratively tune the antenna using the multifunctional tuner.
Abstract:
An electronic device may be provided with wireless circuitry and a housing with upper and lower ends. The lower end may include first and second open slot antennas that are directly fed by respective feeds and that radiate in a cellular ultra-high band. The lower end may also include first and second inverted-F antennas. The upper end may include third and fourth inverted-F antennas. The first inverted-F antenna may have a first feed that conveys currents below 2700 MHz and a second feed that conveys antenna currents in the cellular ultra-high band, a wireless local area network band, and/or ultra-wideband frequency bands. If desired, the upper end may include a third open slot antenna that is directly fed by a corresponding antenna feed and that radiates in the cellular ultra-high band and/or in the ultra-wideband frequency bands.
Abstract:
An electronic device may be provided with an antenna module. A phased antenna array of dielectric resonator antennas may be disposed within the antenna module. The dielectric resonator antennas may include dielectric columns excited by feed probes. A flexible printed circuit may include transmission lines coupled to the feed probes. The flexible printed circuit may have a first end coupled to the antenna module and extending towards peripheral conductive housing structures forming an additional antenna and a second end coupled to transceiver circuitry. Ground traces on the flexible printed circuit may be shorted to ground structures at the first and second ends to improve the antenna efficiency of the additional antenna. The flexible printed circuit may include an elongated slot with overlapping conductive structures and laterally surrounded by a fence of conductive vias to improve the flexibility of the flexible printed circuit while providing satisfactory antenna performance.
Abstract:
An electronic device may be provided with wireless circuitry and control circuitry. The wireless circuitry may include an antenna with an inverted-F antenna resonating element formed from portions of a peripheral conductive electronic device housing structure and may have an antenna ground that is separated from the antenna resonating element by a gap. The antenna may include a first adjustable component coupled between the antenna resonating element arm and the antenna ground on a first side of the antenna feed and a second adjustable component coupled between the antenna resonating element arm and the antenna ground on a second side of the antenna feed. Control circuitry in the electronic device may adjust the first and second adjustable components between a first tuning mode, a second tuning mode, and a third tuning mode.
Abstract:
An electronic device may be provided with wireless circuitry. The wireless circuitry may include multiple antennas and transceiver circuitry. The antennas may include antenna structures at opposing first and second ends of the electronic device. The antenna structures at a given end of the device may include antenna structures that are shared between multiple antennas. The electronic device may include a first antenna with an inverted-F antenna resonating element formed from portions of a peripheral conductive housing structure and may have an antenna ground that is separated from the antenna resonating element by a gap. A return path may bridge the gap. The electronic device may also include a second antenna that includes the antenna ground and an additional antenna resonating element. The antenna resonating element of the second antenna may be parasitically coupled to the return path of the inverted-F antenna at given frequencies.
Abstract:
Electronic device antenna structures may include first and second antennas. A housing may have a periphery that is surrounded by peripheral conductive structures such as a segmented peripheral metal member. A segment of the peripheral metal member may be separated from a ground by an opening. An antenna feed for the first antenna may have a positive antenna terminal coupled to the peripheral metal member and a ground terminal coupled to the ground. A return path for the first antenna may span the opening in parallel with the antenna feed. A plastic carrier may be mounted to a printed circuit and a metal housing structure using screws. The plastic carrier may support an antenna resonating element for the second antenna and may support the return path for the first antenna. The screws may short metal structures on the plastic carrier to the metal structures and traces on the printed circuit.
Abstract:
An electronic device may be provided with an antenna. The antenna may have an antenna resonating element and an antenna ground. The antenna resonating element may be formed from peripheral conductive housing structures. An audio jack or other connector may be mounted in an opening in the peripheral conductive housing structures. The audio jack may overlap the antenna ground. Contacts in the audio jack may be coupled to an interference mitigation circuit. The interference mitigation circuit may include capacitors coupled to the ground and inductors coupled between the contacts and the capacitors. Radio-frequency signal blocking inductors may be coupled between the interference mitigation circuit and respective ports in an audio circuit.