Abstract:
This document describes methods and apparatus for reducing a magnetic field emitted by an earpiece assembly from extending substantially outside a device associated with the earpiece assembly. Where the earpiece assembly is susceptible to ingress of magnetically attractable particles into the earpiece assembly such a reduction can prolong an operational life of the earpiece assembly. By insert molding magnetically permeable materials throughout an enclosure that surrounds and supports a permanent magnet of the earpiece assembly, a portion of a magnetic field emanating from the permanent magnet that extends outside the device can be substantially reduced or redirected so that the magnetic field ceases to draw the magnetically attractable particles into the earpiece assembly.
Abstract:
This document describes methods and apparatus for reducing a magnetic field emitted by an earpiece assembly from extending substantially outside a device associated with the earpiece assembly. Where the earpiece assembly is susceptible to ingress of magnetically attractable particles into the earpiece assembly such a reduction can prolong an operational life of the earpiece assembly. By insert molding magnetically permeable materials throughout an enclosure that surrounds and supports a permanent magnet of the earpiece assembly, a portion of a magnetic field emanating from the permanent magnet that extends outside the device can be substantially reduced or redirected so that the magnetic field ceases to draw the magnetically attractable particles into the earpiece assembly.
Abstract:
To eliminate galvanic corrosion, a housing includes a clad material. The clad material includes an interior metal disposed within an exterior metal. The exterior metal is different from the interior metal. The housing further includes a clad interface and a melt interface. The melt interface includes a layer of hardened flux disposed on a portion of the interior metal.
Abstract:
An electronic device having one or more magnets disposed within it (e.g., such as in a speaker) is equipped with a magnetic shield that attenuates magnetic fields propagating outside of the electronic device. The magnetic shield may be placed within the device such that it redirects the magnetic fields to contain them better within the one or more magnets, resulting in improved magnetic efficiency. In further embodiments, the magnetic shield may also function as a structural part of the electronic device and/or an electronic component with in the electronic device.
Abstract:
An electronic device includes at least a housing having a force transmissive surface capable of receiving a force, a force sensor configured to sense the force received from the force transmissive surface in accordance with a force path and respond by outputting a signal that indicates a magnitude of the force at a first sensitivity level when the magnitude of the force is less than a threshold level, otherwise, the signal indicates the magnitude of the force in accordance with a second sensitivity level. The electronic device includes a processor in communication with the force sensor that uses the signal to alter an operation of the electronic device. In one embodiment, the electronic device is wearable.
Abstract:
An electronic device is configured to detect the presence or absence of a case that is positioned over at least one surface of the electronic device. When a case is present, the electronic device is configured to determine one or more characteristics of the case and adjust one or more operations of the electronic device based on at least one characteristic of the case.
Abstract:
An electronic device has a speaker housing secured within the device housing. The speaker housing has a cavity with a speaker at one end and a port at the other configured to communicate through an aperture in the housing of the electronic device. A panel of acoustic mesh is integrally formed within the cavity of the housing and is disposed between the port and the speaker. In other embodiments flexible structures are integrally molded onto a plate or the acoustic device and used to secure and acoustically seal the acoustic device within the device housing.
Abstract:
An electronic device having liquid-resistant modifications that prevent liquid ingress into an opening (or openings) in an enclosure of the electronic device is disclosed. For example, the electronic device may include a coating formed from a liquid-resistant material that is applied internally to the enclosure. The electronic device may further include a frame that carries a protective transparent layer designed to cover a display assembly. In order to secure the frame with the enclosure, the electronic device may include an adhesive assembly disposed over an outer perimeter of the coating. The adhesive assembly may include several adhesive parts initially separate from one another. However, with the adhesive parts between the frame and the enclosure, the adhesive parts can be compressed by the frame and the enclosure, causing the adhesive parts to expand and engage each other. As a result, the coating and the adhesive parts provide a seal against liquid.
Abstract:
An electronic device has a speaker housing secured within the device housing. The speaker housing has a cavity with a speaker at one end and a port at the other configured to communicate through an aperture in the housing of the electronic device. A panel of acoustic mesh is integrally formed within the cavity of the housing and is disposed between the port and the speaker. In other embodiments flexible structures are integrally molded onto a plate or the acoustic device and used to secure and acoustically seal the acoustic device within the device housing.