Abstract:
Apparatus and methods for distributing access control clients. In one exemplary embodiment, a network infrastructure is disclosed that enables delivery of electronic subscriber identity modules (eSIMs) to secure elements (e.g., electronic Universal Integrated Circuit Cards (eUICCs), etc.) The network architecture includes one or more of: (i) eSIM appliances, (ii) secure eSIM storages, (iii) eSIM managers, (iv) eUICC appliances, (v) eUICC managers, (vi) service provider consoles, (vii) account managers, (viii) Mobile Network Operator (MNO) systems, (ix) eUICCs that are local to one or more devices, and (x) depots. Moreover, each depot may include: (xi) eSIM inventory managers, (xii) system directory services, (xiii) communications managers, and/or (xiv) pending eSIM storages. Functions of the disclosed infrastructure can be flexibly partitioned and/or adapted such that individual parties can host portions of the infrastructure. Exemplary embodiments of the present invention can provide redundancy, thus ensuring maximal uptime for the overall network (or the portion thereof).
Abstract:
Apparatus and methods for distributing electronic access client modules for use with electronic devices. In one embodiment, the access client modules are virtual subscriber identity modules (VSIMs) that can be downloaded from online services for use with cellular-equipped devices such as smartphones. The online services may include a point of sale (POS) system that sells electronic devices to users. A broker may be used to facilitate the selection of a virtual subscriber identity module. A provisioning service may also be used to provision the selected VSIM.
Abstract:
Methods and apparatus for large scale distribution of electronic access control clients. In one aspect, a tiered security software protocol is disclosed. In one exemplary embodiment, a server electronic Universal Integrated Circuit Card (eUICC) and client eUICC software comprise a so-called “stack” of software layers. Each software layer is responsible for a set of hierarchical functions which are negotiated with its corresponding peer software layer. The tiered security software protocol is configured for large scale distribution of electronic Subscriber Identity Modules (eSIMs).
Abstract:
Methods and apparatus enabling programming of electronic identification information of a wireless apparatus. In one embodiment, a previously purchased or deployed wireless apparatus is activated by a cellular network. The wireless apparatus connects to the cellular network using an access module to download operating system components and/or access control client components. The described methods and apparatus enable updates, additions and replacement of various components including Electronic Subscriber Identity Module (eSIM) data, OS components. One exemplary implementation of the invention utilizes a trusted key exchange between the device and the cellular network to maintain security.
Abstract:
The present invention provides a method that protects symbol types by characterizing symbols as one of two types—DATA or NON_DATA, generating a symbol characterization bit, placing the symbol characterization bit at both ends of the symbol, and transmitting the symbol with the symbol characterization bits at both ends. Thus, a single byte error may affect a type bit in two consecutive symbols, and will affect one or the other of the type bits in a single symbol, but cannot affect both type bits in a single symbol.
Abstract:
Methods and apparatus for detecting fraudulent device operation. In one exemplary embodiment of the present disclosure, a device is issued a user access control client that is uniquely associated with a shared secret that is securely stored within the network and the access control client. Subsequent efforts to activate or deactivate the access control client require verification of the shared secret. Each change in state includes a change to the shared secret. Consequently, requests for a change to state which do not have the proper shared secret will be disregarded, and/or flagged as fraudulent.
Abstract:
The present invention provides a method that protects symbol types by characterizing symbols as one of two types—DATA or NON_DATA, generating a symbol characterization bit, placing the symbol characterization bit at both ends of the symbol, and transmitting the symbol with the symbol characterization bits at both ends. Thus, a single byte error may affect a type bit in two consecutive symbols, and will affect one or the other of the type bits in a single symbol, but cannot affect both type bits in a single symbol.
Abstract:
Methods and apparatus for detecting fraudulent device operation. In one exemplary embodiment of the present disclosure, a device is issued a user access control client that is uniquely associated with a shared secret that is securely stored within the network and the access control client. Subsequent efforts to activate or deactivate the access control client require verification of the shared secret. Each change in state includes a change to the shared secret. Consequently, requests for a change to state which do not have the proper shared secret will be disregarded, and/or flagged as fraudulent.
Abstract:
A method for establishing a secure communication channel between an off-card entity and an embedded Universal Integrated Circuit Card (eUICC) is provided. The method involves establishing symmetric keys that are ephemeral in scope. Specifically, an off-card entity, and each eUICC in a set of eUICCs managed by the off-card entity, possess long-term Public Key Infrastructure (PKI) information. When a secure communication channel is to be established between the off-card entity and an eUICC, the eUICC and the off-card entity can authenticate one another in accordance with the respectively-possessed PKI information (e.g., verifying public keys). After authentication, the off-card entity and the eUICC establish a shared session-based symmetric key for implementing the secure communication channel. Specifically, the shared session-based symmetric key is generated according to whether perfect or half forward security is desired. Once the shared session-based symmetric key is established, the off-card entity and the eUICC can securely communicate information.
Abstract:
The embodiments set forth techniques for an embedded Universal Integrated Circuit Card (eUICC) to conditionally require, when performing management operations in association with electronic Subscriber Identity Modules (eSIMs), human-based authentication. The eUICC receives a request to perform a management operation in association with an eSIM. In response, the eUICC determines whether a policy being enforced by the eUICC indicates that a human-based authentication is required prior to performing the management operation. Next, the eUICC causes the mobile device to prompt a user of the mobile device to carry out the human-based authentication. The management operation is then performed or ignored in accordance with results of the human-based authentication.