Abstract:
Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include antenna structures that are formed from an internal ground plane and a peripheral conductive housing member. The internal ground plane and peripheral conductive housing member may be separated by a gap. The internal ground plane may be formed from sheet metal structures having engagement features such as tabs bent upwards at an angle. Plastic structures may be insert molded over the engagement features. When the internal ground plane is mounted in the electronic device, the plastic structures may bridge the gap between the internal ground plane and the peripheral conductive housing member. An adjustable structure such as a washer with a selectable thickness may be mounted to the peripheral conductive housing member opposing conductive structures across the gap. The thickness ma be adjusted to adjust antenna performance.
Abstract:
A portable electronic device is provided that has a hybrid antenna. The hybrid antenna may include a slot antenna structure and an inverted-F antenna structure. The slot antenna portion of the hybrid antenna may be used to provide antenna coverage in a first communications band and the inverted-F antenna portion of the hybrid antenna may be used to provide antenna coverage in a second communications band. The second communications band need not be harmonically related to the first communications band. The electronic device may be formed from two portions. One portion may contain conductive structures that define the shape of the antenna slot. One or more dielectric-filled gaps in the slot may be bridged using conductive structures on another portion of the electronic device. A conductive trim member may be inserted into an antenna slot to trim the resonant frequency of the slot antenna portion of the hybrid antenna.
Abstract:
Electronic devices may include antenna structures. The antenna structures may form an antenna having first and second feeds at different locations. A first transceiver may be coupled to the first feed using a first circuit. A second transceiver may be coupled to the second feed using a second circuit. The first and second feeds may be isolated from each other using the first and second circuits. The second circuit may have a notch filter that isolates the second feed from the first feed at operating frequencies associated with the first transceiver. The first circuit may include an adjustable component such as an adjustable capacitor. The adjustable component may be placed in different states depending on the mode of operation of the second transceiver to ensure that the first feed is isolated from the second feed.
Abstract:
Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include antenna structures that are formed from an internal ground plane and a peripheral conductive housing member. The internal ground plane and peripheral conductive housing member may be separated by a gap. The internal ground plane may be formed from sheet metal structures having engagement features such as tabs bent upwards at an angle. Plastic structures may be insert molded over the engagement features. When the internal ground plane is mounted in the electronic device, the plastic structures may bridge the gap between the internal ground plane and the peripheral conductive housing member. An adjustable structure such as a washer with a selectable thickness may be mounted to the peripheral conductive housing member opposing conductive structures across the gap. The thickness ma be adjusted to adjust antenna performance.