Abstract:
Disclosed is a resource allocating method of a LTE-advanced based D2D communications system including a plurality of D2D terminals, the method comprising: by the D2D terminals, requesting a base station to allocate a licensed band and searching for a spectrum for usable non-licensed bands; generating a D2D communications link by using a resource of the licensed band that is allocated from the base station; calculating a signal to interference and noise ratio (SINR) of the D2D communications link; selecting at least one of resources of the searched non-licensed band when the signal to interference and noise ratio (SINR) is smaller than a threshold value; and performing D2D communications by using a resource of the selected non-licensed band.
Abstract:
Disclosed herein is an interference recognition-based D2D resource allocation method that uses a base station in a cellular system which includes the base station, a plurality of cellular terminals being in a cell that the base station covers, and a plurality of D2D terminals, including: receiving information of a resource block of a least interference amount that a D2D receiving terminal obtains through resource search and information of search time of the resource search from the D2D receiving terminal; obtaining information of a cellular terminal corresponding to the received resource block and the search time among the plurality of cellular terminals from resource scheduling information storing allocation information of the resource block depending on time per each cellular terminal; and simultaneously allocating frequency resource of the cellular terminal to the D2D receiving terminal and a D2D transmitting terminal by using resource scheduling information corresponding to the obtained cellular terminal.
Abstract:
The present invention related to a varactor used in an integrated circuit of a differential structure. An exemplary embodiment of the present invention provides a variable capacitor connected between first and second signal lines which are differential signal lines included in an integrated circuit of a differential structure, including: a plurality of N-type semiconductors separately arranged; one or more P-type semiconductors disposed between the N-type semiconductors to make first and second PN junctions with N-type semiconductors contacting upper and lower portions thereof and to receive a control voltage, wherein, among the N-type semiconductors, first N-type semiconductors corresponding to (2n−1)-th (n being a positive integer) are connected with the first signal line, and second N-type semiconductors corresponding to 2n-th are connected with the second signal line, and parasitic capacitances of the first and second PN junctions are varied by adjusting the control voltage.
Abstract:
A sensor integrated haptic device, a method for manufacturing the sensor integrated haptic device and an electronic device including the sensor integrated haptic device are provided. To elaborate, the sensor integrated haptic device includes a sensor and an actuator formed to be arranged on the same plane as the sensor, and each of the sensor and the actuator includes a lower electrode formed through a first process, an ionic elastomer layer formed on the lower electrode through a second process, and an upper electrode formed on the ionic elastomer layer through a third process.
Abstract:
A power amplifier having a stack structure comprises a first driver stage that receives a power voltage from a power supply and receives and amplifies an input signal; a second driver stage that receives the power voltage from the power supply, has an input terminal connected with an output terminal of the first driver stage, and receives and amplifies an output signal from the first driver stage; and a power stage that has a power input terminal connected with a ground terminal of the first driver stage and a ground terminal of the second driver stage and receives a virtual ground voltage, and has an input terminal connected with an output terminal of the second driver stage and receives and amplifies an output signal from the second driver stage.
Abstract:
A user terminal includes a communication circuit, a certification circuit, an execution circuit, and a control circuit. The communication circuit receives a normal code of an application from an application providing server to install the application. The certification circuit receives a registration request message, which includes distinct information of a peripheral device, from the peripheral device storing a core code of the application, to certify the peripheral device, transmits a registration response message, which includes distinct information of the user terminal, to the peripheral device, and receives the core code of the application from the peripheral device. The execution circuit executes the application using the normal code and the core code. The control circuit restricts at least one of functions of the user terminal while the application is executed.
Abstract:
There is provided a flow meter using at least one ultrasonic transducer. The flow meter includes an ultrasonic transducer, a wedge that has a sloped surface formed on a top portion of the wedge and oblique with respect to a downward direction, and a dented portion formed in a half-cylinder shape along a longitudinal direction of the sloped surface; and a rotation portion that has a plane section where the ultrasonic transducer is positioned, and a curved section extended from two opposite edges of the plane section and curved in a semicircular shape to be contacted with the dented portion.
Abstract:
The present disclosure suggests a conveyor system. A conveyor system in accordance with an exemplary embodiment of the present disclosure includes: a plurality of transportation modules; a front conveyer including a multiplicity of conveyors, which are driven at a first speed, arranged side by side to be in parallel to each other and configured to transfer the transportation modules; and a central conveyor driven at a second speed, provided adjacent to an end portion of the front conveyor and configured to transfer the transportation modules transferred from the front conveyor.
Abstract:
A user terminal includes a communication circuit, an encryption-decryption circuit, and an execution circuit. The communication circuit receives a core code file of an application from a peripheral device, which stores the core code file of the application, when certifying a core code of the application. The encryption-decryption circuit encrypts the core code file and transmits the encrypted core code file to the peripheral device, and, when executing the application, receives the encrypted core code file from the peripheral device and decrypts the encrypted core code file. The execution circuit executes the application using the decrypted core code file and a normal code file of the application stored in the user terminal. Since the normal code file is stored in the user terminal and the core code file is stored in the peripheral device, the core code of the application is protected from reverse engineering attacks.
Abstract:
Disclosed herein is a linear amplifier using a nonlinear amplifying stage which includes a first amplifier and a second amplifier connected in cascade, including: a bias voltage generator in which a first bias voltage is applied to a gate terminal of the first amplifier, and a second bias voltage higher than the first bias voltage is applied to a gate terminal of the second amplifier, wherein the first amplifier and the second amplifier have a nonlinear gain characteristic in a region of arbitrary output power, and as the output power increases in the region of arbitrary output power, a gain of the first amplifier increases, while a gain of the second amplifier decreases.