摘要:
A metal contaminated spent catalyst or regenerated catalyst from a biomass conversion unit may be subjected to an ammonium wash in order to remove potassium. The ammonium wash may include ammonium sulfate, ammonium nitrate, ammonium hydroxide, ammonium acetate, ammonium phosphates, and mixtures thereof. Acidity and catalytic activity of the biomass conversion catalyst is restored by the removal of potassium contaminants.
摘要:
Emissions of polynuclear aromatic hydrocarbons (PAHs) from diesel engines may be reduced by blending a renewable hydrocarbon distillate with a base diesel fuel. The base diesel may be a fossil diesel fuel, a Fischer-Tropsch diesel fuel as well as a hydroprocessed biodiesel fuel or a combination thereof. The renewable hydrocarbon distillate is a fraction from hydrotreated bio-oil having a boiling point between from about 320° F. to about 700° F.
摘要:
A process for producing renewable biofuels from biomass is provided wherein a bio-oil containing stream is hydrotreated in an integrated system which uses streams and components generated or obtained from the biomass treatment and conversion.
摘要:
Emissions of polynuclear aromatic hydrocarbons (PAHs) from diesel engines may be reduced by blending a renewable hydrocarbon distillate with a base diesel fuel. The base diesel may be a fossil diesel fuel, a Fischer-Tropsch diesel fuel as well as a hydroprocessed biodiesel fuel or a combination thereof. The renewable hydrocarbon distillate is a fraction from hydrotreated bio-oil having a boiling point between from about 320° F. to about 700° F.
摘要:
A renewable fuel may be obtained from a bio-oil containing C3-C5 oxygenates. In a first step, the bio-oil is subjected to a condensation reaction in which the oxygenates undergo a carbon-carbon bond forming reaction to produce a stream containing C6+ oxygenates. In a second step, the stream is hydrotreated to produce C6+ hydrocarbons.
摘要:
Liquid bio-fuels and processes for their production are provided. The liquid bio-fuels can have improved stability, less corrosiveness, and/or an improved heating value.
摘要:
More stable and valuable bio-oil produced from biomasses are provided. More specifically, more stable and valuable bio-oil useful as heating oil, alone or in combination with an oxygenated acyclic component, is provided. Particularly, various embodiments of the present invention provide for a bio-oil having sufficient heating value and stability to be useful as heating oil, alone or in combination with an oxygenated acyclic component, without the need to hydrotreat the bio-oil or use a similar deoxygenating process.
摘要:
Disclosed is a method for determining properties of hydrocarbonaceous samples including a component prepared from: 1) the thermo-catalytic conversion of biomass, or 2) the pyrolytic conversion of biomass with subsequent upgrading. The determination of the property(ies) is by use of a near-infrared spectra based correlation.
摘要:
A process and system for separating a light fraction, a bio-distillate fraction, and a heavy fraction from a bio-oil, and for producing a renewable distillate including at least in part the bio-distillate fraction and a stabilizing additive, is provided. In addition, a process and system is provided for upgrading a bio-oil by use of a diluent and/or a recycle stream from the upgrading process to reduce fouling in upgrading equipment, such as a preheater and a hydrodeoxygenation unit.
摘要:
A process is disclosed process for converting a solid or highly viscous carbon-based energy carrier material to liquid and gaseous reaction products, said process comprising the steps of: a) contacting the carbon-based energy carrier material with a particulate catalyst material b) converting the carbon-based energy carrier material at a reaction temperature between 200° C. and 450° C., preferably between 250° C. and 350° C., thereby forming reaction products in the vapor phase. In a preferred embodiment the process comprises the additional step of: c) separating the vapor phase reaction products from the particulate catalyst material within 10 seconds after said reaction products are formed. In a further preferred embodiment step c) is followed by: d) quenching the reaction products to a temperature below 200° C.