摘要:
A wireless transmission device capable of communicating with a receiver according to a DFT-spread OFDM protocol. The wireless transmission device comprises a configurable spectral shaping filter block capable of performing spectral shaping of an outgoing signal. The wireless transmission device configures the configurable spectral shaping filter block to perform spectral shaping according to a peak-to-average power (PAPR) value associated with the outgoing signal. The multi-carrier protocol comprises one of orthogonal frequency division multiple access (OFDMA) and orthogonal frequency division multiplexing (OFDM).
摘要:
A base station includes a transmit path circuitry to transmit DL grant, data streams, and a control signal to configure a number of uplink transmit antenna ports PUCCH to a subscriber station. The base station also includes a receive path circuitry to receive ACK/NACK modulation in response to the data streams. If the subscriber station is configured to transmit ACK/NACK using one uplink transmit antenna port and channel selection with PUCCH format 1B, a modulation symbol is transmitted on one (PUCCH) i determined based at least partly upon a channel selection mapping table. If the subscriber station is configured to transmit ACK/NACK using two uplink transmit antenna ports and channel selection with PUCCH format 1B, the ACK/NACK modulation symbol is transmitted on two PUCCHs.
摘要:
A wireless communication network comprising a plurality of base stations capable of wireless communication with a plurality of subscriber stations within a coverage area of the network, wherein at least one of the plurality of base stations is capable of selecting two or more orthogonal frequency-division multiplexing (OFDM) symbols in a subframe of a physical uplink shared channel, the two or more OFDM symbols are selected starting from the bottom of the physical uplink shared channel in a bottom-up manner, and repeating one or more rank information (RI) coded bits in each of the selected two or more OFDM symbols.
摘要:
Methods and apparatus for remapping and regrouping transmission resources in a wireless communication system. First, a set of new permutation algorithms based on Galois field operation is proposed. Then the proposed algorithms and the known Pruned Bit Reversal Ordering (PBRO) algorithm are applied to several of various resource mapping schemes, including slot or symbol level Orthogonal Cover (OC)/Cyclic Shift (CS) mapping, cell-specific slot-level and symbol-level CS hopping patterns, and subframe and slot level base sequence hopping patterns.
摘要:
Embodiments of a User Equipment (UE), Evolved Node-B (eNB) and methods for communication are generally described herein. The UE may receive downlink control information (DCI) that indicates an allocation for a new radio (NR) physical uplink shared channel (NR PUSCH) transmission, by the UE, in a channel of multiple physical resource blocks (PRBs) in a slot that comprises: a predetermined data region, and a predetermined control region reserved for NR physical uplink control channel (NR PUCCH) transmissions. The DCI may be configurable to indicate whether the allocation includes one or more of the PRBs in the control region. The allocation may include one or more of the PRBs in one or more symbol periods in the data region and may be configurable to include one or more of the PRBs in one or more symbol periods in the control region.
摘要:
Embodiments of apparatus and methods for signaling for resource allocation and scheduling in 5G-NR integrated access and backhaul are generally described herein. In some embodiments, User Equipment configured for reporting a channel quality indicator (CQI) index in a channel state information (CSI) reference resource assumes a physical resource block (PRB) bundling size of two PRBs to derive the CQI index.
摘要:
A network device (e.g., a user equipment (UE), or a new radio NB (gNB)) can process or generate a configuration of a physical random access channel (PRACH) over physical resource blocks (PRBs) that are interlaced in an unlicensed band in an NR unlicensed (NR-U) communication. The PRBs in the PRACH can be based on an occupied channel bandwidth (OCB) of the unlicensed band in the NR-U communication. A random access channel transmission in the PRACH can then be generated by interlacing the PRBs defining the PRACH.
摘要:
A method and an apparatus for operating a subframe and transmitting channel information for controlling interference in a communication system are provided. If a macro evolved Node B (eNodeB) determines and reports an uplink protection subframe for suppressing uplink transmission to a neighboring eNodeB, transmits scheduling information for uplink data through a downlink subframe corresponding to an uplink protection subframe, and the uplink protection subframe determined by the neighboring eNodeB is reported, a small eNodeB sets the reported uplink protection subframe as a flexible subframe, and uses the flexible subframe for downlink transmission. If the flexible subframe is used for the downlink transmission, a terminal of the small eNodeB measures and transmits non-period channel information in the flexible subframe through at least one uplink subframe.
摘要:
A method of defining physical channel transmit/receiving timings and resource allocation is provided for use in a Time Division Duplex (TDD) communication system supporting carrier aggregation. A method for receiving, at a base station, a Hybrid Automatic Repeat Request (HARQ) acknowledgement from a terminal in a Time Division Duplex (TDD) system supporting carrier aggregation of a primary cell and at least one secondary cell includes transmitting a downlink physical channel through one of the primary and secondary cells, receiving the HARQ acknowledgement corresponding to the downlink physical channel of the primary cell at a first timing predetermined for the primary cell, and receiving the HARQ acknowledgement corresponding to the downlink physical channel of the secondary cell at second timing, wherein the second timing is determined according to the first timing.
摘要:
A method for allocating resources of a common control channel includes determining a carrier type, allocating, when the carrier is backward compatible, resources for a Physical Control Format Indicator CHannel (PCFICH), and allocating resources for a common control channel with a dedicated reference signal based on a Physical Resource Block allocated for the PCFICH. A UE can receive the common control channel without extra signaling by mapping the common control channel to the frequency resource based on the cell-specific parameter or channel.