Abstract:
Methods and apparatus for constructing polar codes are provided. A transmitter determines at least one set of parameters corresponding to data to be transmitted, and a set of sorting indices corresponding to bits of the data to be transmitted based on the set of parameters, the set of sorting indices indicating a position set of the bits to be transmitted. The transmitter polar encodes the data based at least on the set of parameters and the set of sorting indices to generate a coded block of the data, and transmits the coded block of the data.
Abstract:
Certain aspects of the present disclosure provide techniques for dynamic multi-beam transmission for new radio eNB UE (NR) technology multiple-input multiple-output (MIMO) communications. A user equipment (UE) may measure beamformed channel state information reference signals (CSI-RSs) from one or more transmit and receive points (TRPs) and report rank information and/or channel quality information for beams associated with the various beamformed CSI-RSs.
Abstract:
Increased symbol length of uplink pilot time slots (UpPTS) in special subframes is disclosed in which a configuration of a first special subframe may be independent from configuration of a second special subframe in the same frame, such that the first UpPTS of the first special subframe is longer than the second UpPTS of the second special subframe. The second UpPTS of the second special subframe may also be longer than legacy UpPTS length in select configurations. A serving base station may select the special subframe configurations in order to balance sounding reference signal (SRS) capacity for compatible user equipments (UEs) and downlink throughput for legacy UEs. The selected special subframe configurations may be transmitted by the serving base stations. In additional aspects, compatible UEs may be configured with at least two separate SRS power control parameters for use in the additional and legacy UpPTS symbols.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a UE. The UE determines a first CSI subframe set including a first set of subframes of a frame and a second CSI subframe set including a second set of subframes of the frame. Subframes in the first set of subframes are different than subframes in the second set of subframes. The UE determines a CSI reference subframe in one of the first CSI subframe set or the second CSI subframe set. The UE measures CSI in the CSI reference subframe. The UE receives an aperiodic CSI request in a triggering subframe in one of the first CSI subframe set or the second CSI subframe set. The triggering subframe is after the CSI reference subframe.
Abstract:
In aspects, methods and apparatus for utilizing a reconfiguration timer for updating TDD configuration are provided. Certain aspects of the present disclosure propose methods and apparatus for improving system performance while using adaptive uplink-downlink reconfiguration in a time division duplex (TDD) system. For certain aspects, a reconfiguration timer may be utilized along with a signaling scheme, in order to enjoy benefits of the adaptive uplink-downlink reconfiguration with minimum signaling overhead.
Abstract:
An aerial device receives a timing advance configuration from a base station for sidelink communication with one or more user equipments (UEs), the timing advance configuration indicating an initial timing advance for the sidelink communication with the one or more UEs. The aerial device transmits a discovery message from the aerial device to the one or more UEs at a transmission time based on the initial timing advance relative to a reference time of a sidelink synchronization reference.
Abstract:
Aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for techniques for wireless communications based on orbital angular momentum (OAM) modes. One aspect provides a method for wireless communications by a first wireless node. The method generally includes transmitting traffic to a user equipment (UE) on an access link, using a first portion of a uniform circular array (UCA) antenna panel and transmitting traffic to a second wireless node on a backhaul link, using a second portion of the UCA antenna panel.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a first user equipment (UE) may receive a bandwidth part (BWP) frequency hopping configuration for a BWP and a first configuration of a sounding reference signal (SRS) resource. The UE may receive a second configuration of the SRS resource for one or more frequency hops of the BWP frequency hopping configuration, wherein the second configuration resolves a partial overlap of the SRS resource with an SRS resource of a second UE in the one or more frequency hops. The UE may transmit one or more SRSs based at least in part on the second configuration of the SRS resource. Numerous other aspects are described.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may transmit a sounding reference signal (SRS) in multiple slots. A network entity may determine precoding weights in three domains based on the SRS and output reference signals that are precoded based on the precoding weights. The network entity may output control signaling that indicates reference signal resource grouping information that the UE is to use for channel estimations. The reference signal resource grouping information may specify whether the ports in one group are precoded with identical or different spatial, frequency, and time domain weights. A UE may receive the precoded reference signals and the grouping information and report estimated channel metrics and an indication of selected ports per group to the network entity. The network entity may determine precoding in three domains for subsequent downlink communications.