Abstract:
Techniques for supporting operation on multiple carriers are described. In an aspect, a carrier indicator (CI) field may be used to support cross-carrier assignment. The CI field may be included in a grant sent on one carrier and may be used to indicate another carrier on which resources are assigned. In one design, a cell may determine a first carrier on which to send a grant to a UE, determine a second carrier on which resources are assigned to the UE, set a CI field of the grant based on the second carrier and a CI mapping for the first carrier, and send the grant to the UE on the first carrier. The UE may receive the grant on the first carrier from the cell and may determine the second carrier on which resources are assigned to the UE based on the CI field of the grant and the CI mapping for the first carrier.
Abstract:
Techniques for transmitting pilot and traffic data are described. In one aspect, a terminal may scramble its pilot with a scrambling sequence generated based on a set of static and dynamic parameters. The static parameter(s) have fixed value for an entire communication session for the terminal. The dynamic parameter(s) have variable value during the communication session. The terminal may generate a scrambling sequence by hashing the set of parameters to obtain a seed and initializing a pseudo-random number (PN) generator with the seed. The terminal may then generate the pilot based on the scrambling sequence. In another aspect, the terminal may use different scrambling sequences for pilot and traffic data. A first scrambling sequence may be generated based on a first set of parameters and used to generate the pilot. A second scrambling sequence may be generated based on a second set of parameters and used to scramble traffic data.
Abstract:
Packet-level splitting for data transmission via multiple carriers is discussed. Data packets for transmission may be segregated by a first network node into multiple flows in which data packets for a first flow may be sent from the first network node to a second network node using a first set of carriers while data packets for the other flows may be forwarded to other network nodes for transmission to the second network node using other sets of carriers. The various sets of carriers are determined by the sets of carriers configured for the second network node.
Abstract:
Methods, systems, and devices are described for assisting discovery of a wireless local area network (WLAN). A timing reference originating from a first radio technology is identified by a user equipment (UE). A WLAN receiver of the UE is woken up according to a beacon transmission schedule to listen for a beacon on the WLAN. The first radio technology is a non-WLAN radio technology, and the beacon transmission schedule is based at least in part on the timing reference. The timing reference originating from the first radio technology is identified by a Wireless Access Point (WAP). The WAP broadcasts a beacon on the WLAN according to the beacon transmission schedule.
Abstract:
A method, an apparatus, and a computer program product for wireless communication where a macro eNB or similar device may be configured to adjust an ABS configuration that is used for designating ABS subframes are provided to provide a VoLTE service to a UE. The ABS configuration may be adjusted by imposing one or more restrictions, such as alignment of the DRX OnDuration of a UE with some offset to the serving cell non-ABS subframes, and imposing restrictions on the ABS subframe settings at the macro eNB. The method or apparatus may initiate or terminate a wireless communication feature for a UE, and may adjust an ABS configuration based on the wireless communication feature, such that a maximum limit is set on a number of ABS subframes or a minimum limit is set on a number of non-ABS subframes based on the wireless communication feature.
Abstract:
An operational characteristic of a relay is determined. The relay is a user equipment (UE) serving as an eNB. The operational characteristic includes one or more of a quality of a relay backhaul and a capacity of the relay backhaul. The relay backhaul includes a communications link between the relay and an eNB. A determination of whether to perform a handover of a UE is made based on the operational characteristic of the relay and a corresponding operational characteristic of the eNB.
Abstract:
Methods and apparatus for partitioning resources for enhanced inter-cell interference coordination (eICIC) are provided. Certain aspects involve broadcasting a message indicating time-domain resource partitioning information (RPI), where a user equipment (UE) may be operating in idle mode. With the RPI, the UE may be able to identify protected resources with reduced/eliminated interference from neighboring cells. The RPI in this broadcasted message may be encoded as a bitmap as an alternative or in addition to enumeration of the U/N/X subframes. Other aspects entail transmitting a dedicated or unicast message indicating the time-domain RPI, where a UE may be operating in connected mode. With the RPI, the UE may be able to determine channel state information (CSI), make radio resource management (RRM) measurements, or perform radio link monitoring (RLM), based on one or more signals from a serving base station during the protected time-domain resources.
Abstract:
Techniques for transmitting pilot and traffic data are described. In one aspect, a terminal may scramble its pilot with a scrambling sequence generated based on a set of static and dynamic parameters. The static parameter(s) have fixed value for an entire communication session for the terminal The dynamic parameter(s) have variable value during the communication session. The terminal may generate a scrambling sequence by hashing the set of parameters to obtain a seed and initializing a pseudo-random number (PN) generator with the seed. The terminal may then generate the pilot based on the scrambling sequence. In another aspect, the terminal may use different scrambling sequences for pilot and traffic data. A first scrambling sequence may be generated based on a first set of parameters and used to generate the pilot. A second scrambling sequence may be generated based on a second set of parameters and used to scramble traffic data.
Abstract:
A method operable by an access point for using white space (WS) bandwidth in wireless communication service includes receiving a request to establish a connection from a mobile entity. The method further includes forwarding the request to a service authentication entity to authenticate the mobile entity for the service, and obtaining authorization for service and white space (WS) parameters for the mobile entity from the service authentication entity. The method further includes determining the connection is operating in WS; and authenticating the mobile entity for the service in the WS based at least in part on the received WS parameters. A complementary method is performed by a service authentication entity. Wireless communication apparatus are configured to perform the methods by executing instructions stored on a computer-readable medium.
Abstract:
The state of an access link and backhaul link of a low power node may be determined and controlled after a low power node is initialized. The overhead signaling on the access link of a relay is controlled based on detecting a user equipment (UE). The connection on the backhaul link of the relay is managed in response to the overhead signaling on the access link.