Abstract:
Antenna ports on wireless devices may be QCL. QCL antenna ports may be useful in improving channel statistics related to the antenna ports. UEs and base stations may be able to determine candidate QCL ports, transmit information identifying the candidate QCL ports, and receive feedback indicating whether the candidate QCL ports are QCL at the receiving device such as a UE or a base station.
Abstract:
Various aspects related to using cellular RATs and/or features thereof for backhauling purposes are described. In an aspect, a solution to enable synchronization and establishing links among the ANs using available RATs with minimum modifications is provided. In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus for wireless communication are provided. The apparatus maybe a first AN, e.g., base station. The apparatus maybe configured to determine a synchronization schedule of at least one second AN based on received information indicating the synchronization schedule of the at least one second AN, and transmit information regarding the synchronization schedule of the at least one second AN to at least one of one or more neighboring ANs or one or more UEs.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for multiplexing new radio (NR) synchronization signals and paging signals. A Base Station (BS) decides whether or not to multiplex paging and synchronization signals in a set of time resources, a set of frequency resources or a combination thereof, the deciding based on at least one of a capability of the BS, a capability of at least one User Equipment (UE) served by the BS, an operating frequency band or a combination of tone spacings of the paging signals and the synchronization signals.
Abstract:
Certain aspects of the present disclosure provide mechanisms for band-dependent configuration of synchronization signal transmission, as well band-dependent synchronization signal designs. The band-dependent configuration and design may help optimize certain transmission parameters (such as antenna ports and transmission power) to current operating bands
Abstract:
Certain aspects of the present disclosure provide techniques for assisted power control for an uplink signal transmitted during a RACH procedure. A UE may determine a transmit power for transmitting a message during a RACH procedure with a secondary BS, based at least in part, on communication between the UE and a primary BS. The UE may transmit the message to the second BS during the RACH procedure based, at least in part, on the determined transmit power.
Abstract:
The apparatus may be a base station. The apparatus processes a first group of synchronization signals. The apparatus processes a second group of synchronization signals. The apparatus performs a first transmission by transmitting the processed first group of the synchronization signals in a first synchronization subframe. The apparatus performs a second transmission by transmitting the processed second group of the synchronization signals in a second synchronization subframe.
Abstract:
According to an aspect of the disclosure, a base station may convey the parameter information to the UE based on selection of particular resources to be used for transmission of synchronization signals, where the selected resources correspond to the particular parameter information. The UE may blindly detect the synchronization signals on various candidate resources and determine the parameter information based on the resources where the synchronization signals are detected. The apparatus may be a base station. In an aspect, the base station determines parameter information of one or more parameters. The base station selects, based on the parameter information, synchronization resources from a plurality of candidate resources for transmission of one or more synchronization signals, where the selected synchronization resources correspond to the parameter information. The base station transmits the one or more synchronization signals using the selected synchronization resources.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with improving convergence to a common timing structure for devices in a distributed synchronization D2D network. In an example, a communications device is equipped to detect, by a UE, a synchronization signal during a listening slot duration scan of a communication channel. In an aspect, the listening slot duration may be defined based on a first timing structure, and the synchronization signal may be defined based on a second timing structure. The communications device may further be equipped to obtain timing information associated with the second timing structure from the synchronization signal, and determine whether the first timing structure or the second timing structure is a preferred timing structure.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a network node may receive an energy usage monitoring configuration associated with service of a user equipment (UE). The network node may transmit to the UE, or receive from the UE, one or more transmissions. The network node may transmit, based at least in part on the one or more transmissions, an energy usage report associated with the energy usage monitoring configuration. Numerous other aspects are described.
Abstract:
Aspects described herein relate to establishing a control connection with at least a first node and a second node for receiving control information for providing a repeater function between two or more wireless nodes. Control information can be communicated over the control connection from one or more of at least the first node or the second node. The repeater can provide, based on the control information, the repeater function between the two or more wireless nodes. Other aspects relate to establishing a control connection with a first node for receiving control information for providing a repeater function for one or more upstream nodes, receiving control information over the control connection, determining a conflict in receiving the control information or a conflict within the control information for two or more upstream nodes, and providing, based on the control information and conflict, the repeater function for the one or more upstream nodes.