Abstract:
Embodiments of the present invention provide a method and an apparatus for transmitting pattern information. The method for transmitting pattern information includes obtaining pattern information; and sending the pattern information to UE. The first pattern information indicates that the spectrum of the first cell is allocated to the first RAT in a first plurality of sub-frames, and that the spectrum of the first cell is allocated to the second RAT in a second plurality of sub-frames. The first pattern information enables the UE to select any sub-frame in the first plurality of sub-frames to measure a CRS if the UE RAT pattern corresponds to the first RAT, or enables the UE to select any sub-frame in the second plurality of sub-frames to measure the CRS if the UE RAT pattern corresponds to the second RAT. The embodiments of the present invention improve scheduling accuracy and efficiency.
Abstract:
The present invention provides a method for determining an unnecessary handover and a base station. The method includes: if a user equipment UE is handed over from a first cell to a second cell, and then handed over from the second cell to a third cell, determining, by a base station, a time threshold corresponding to a UE characteristic attribute parameter of the UE, and a time of stay of the UE in the second cell; determining, by the base station according to the time threshold corresponding to a UE characteristic attribute and the time of stay of the UE in the second cell that are determined, whether an unnecessary handover of the UE occurs; and determining that an unnecessary handover of the UE occurs if the time of stay is shorter than the time threshold. The present invention optimizes a method for determining whether an unnecessary handover occurs.
Abstract:
A method for determining a management domain, the method comprising: receiving, by a second network device, a first packet sent by a first network device, where the first packet includes a domain ID of a first management domain and a first IP address set corresponding to the domain ID of the first management domain, and the first IP address set includes an IP address of a network device in the first management domain; and when the second network device determines that the first IP address set includes an IP address of the second network device, determining that the second network device belongs to the first management domain, and storing the domain ID of the first management domain.
Abstract:
The application provides a method for determining a packet forwarding path, a network device acquires device information of the network device and interface information of the network device, so that the network device can send the device information of the network device and the interface information of the network device to a control device by using an IGP, so that the control device determines a packet forwarding path from the network device to the control device according to the device information of the network device and the interface information of the network device. Each network device that sends device information and interface information of the network device by using an IGP does not need to compute a packet forwarding path from the network device to a corresponding control device; therefore, decreasing a processing burden of the network device.
Abstract:
The present invention relates to the field of communication technology. Disclosed are a redirection method and a redirection apparatus under policy and charging control (PCC) for improving user's service experience. The redirection method under PCC comprises: acquiring a user's service status change information and the current scenario information; determining whether to issue a redirection task to a policy and charging enforcement function (PCEF) according to the current scenario information; when a redirection task needs to be issued to the PCEF, then generating a redirection indication message according to the service status change information and the current scenario information, the redirection indication message comprising redirection indication information; and sending the redirection indication message to the PCEF so that the PCEF performs a redirection operation according to the redirection indication information in the redirection indication message.
Abstract:
A method and a device for monitoring a service usage amount includes: determining, according to one of quintuple information, protocol information, and URL information in received service request information, whether the service request information is the same as specified service stream information in one or multiple session level service monitoring tasks, where the session level service monitoring task includes a session level service monitoring class identity, a monitoring task identity, and the specified service stream information; the monitoring class identity indicates that the monitoring task is used to monitor a usage amount of a specified service stream in a session; when determining yes, accumulating a usage amount of the service request information in the one or multiple session level service monitoring tasks; and reporting the monitoring task identity and an accumulated usage amount of the service request information in the session level service monitoring task to a PCRF.
Abstract:
The present invention provides a control channel establishing method, a forwarding point, and a controller. The method includes: sending, by a first FP, topology information of the first FP to a second FP by using the LLDP; receiving, by the first FP, first routing information that is sent by the controller and is used by the first FP to reach the controller, where the first routing information is generated by the controller according to the topology information of the first FP; and establishing, by the first FP, a second control channel with the controller according to the first routing information. The first FP does not need to run the IGP protocol, thereby avoiding that the first FP maintains an IGP neighbor relationship; moreover, the first FP does not need to store routing information for reaching another FP, which helps save storage resources and helps improve forwarding performance.
Abstract:
The present invention provides a method for determining an unnecessary handover and a base station. The method includes: if a user equipment UE is handed over from a first cell to a second cell, and then handed over from the second cell to a third cell, determining, by a base station, a time threshold corresponding to a UE characteristic attribute parameter of the UE, and a time of stay of the UE in the second cell; determining, by the base station according to the time threshold corresponding to a UE characteristic attribute and the time of stay of the UE in the second cell that are determined, whether an unnecessary handover of the UE occurs; and determining that an unnecessary handover of the UE occurs if the time of stay is shorter than the time threshold. The present invention optimizes a method for determining whether an unnecessary handover occurs.
Abstract:
A method for determining an auxiliary bit of a polar code and an apparatus. At least K sub-channels are determined based on reliability of a first sub-channel set, where the K sub-channels carry information bits. S sub-channel subsets are determined based on the first sub-channel set, an ith sub-channel subset in the S sub-channel subsets includes Ji sub-channels carrying auxiliary bits and Ki sub-channels in the K sub-channels. Sequence numbers of the Ji sub-channels carrying the auxiliary bits are after sequence numbers of the Ki sub-channels. The auxiliary bits are known redundancy check RC bits. Polar encoding is performed on the information bits and the auxiliary bits, to output polar-encoded data.
Abstract:
Methods, devices, and computer-readable storage media are disclosed. In an example method, segmentation of to-be-encoded information bits of a length N into respective quantities of different types of segments is performed. The different types of segments are among (b−a+1) types of segments that correspond to (b−a+1) different segment code lengths. The (b−a+1) types of segments comprise a minimum-length segment that has the minimum segment code length of 2{circumflex over ( )}a and a maximum-length segment that has the maximum segment code length of 2{circumflex over ( )}b. The respective quantities of the different types of segments are determined based on the length N and a code rate in an orderly manner, wherein the orderly manner comprises firstly determining a quantity of the maximum-length segments and lastly determining a quantity of the minimum-length segments. Polar code encoding is performed on the respective quantities of the different types of segments of the to-be-encoded information bits.