Abstract:
Systems, methods, and devices for reducing collisions in a wireless communications network are described herein. In some aspects, a processor is configured to decrementing a value of a counter if a channel of a wireless communications network is idle for at least an extended slot time. The processor may be further configured to generate a polling request and allow the transmission of the polling request to an access point over the wireless communications network when the value of the counter reaches a threshold value.
Abstract:
A device includes a processor and a memory accessible by the processor. The memory includes access category data specifying one or more access categories. The one or more access categories include a sensor access category specifying distributed channel access parameters to be used by one or more station devices to wirelessly communicate sensor data via a network. The memory further includes instructions executable by the processor to send at least a portion of the access category data to a station device to enable the station device to communicate sensor data.
Abstract:
Systems and methods for low overhead paging in a wireless communications network are described herein. In some aspects, an apparatus for wireless communication includes a receiver and a processor. The receiver receives a request from a first device. The request indicates a first period of a plurality of periods corresponding to a periodicity for transmitting paging messages. The processor assigns the first device to a group scheduled to receive paging messages at most every first period based on the request and determines a start time for transmitting paging messages to the first device based on schedules for transmitting paging messages to a plurality of other devices. In other aspects, an apparatus for wireless communication includes a processor and memory. The processor derives an information sub-unit from an information unit associated with a paging message, compresses the information sub-unit, and generates a second information unit associated with the method of compression.
Abstract:
A first access point (AP) of an AP multi-link device (MLD) is associated with a first communication link, and one or more secondary APs of the AP MLD are associated with one or more respective secondary communication links of the AP MLD. The first AP of the AP MLD generates a frame including a first change sequence field and one or more secondary change sequence fields. The first change sequence field indicates a presence or absence of a critical update associated with the first communication link, and each of the one or more secondary change sequence fields indicates a presence or absence of a critical update associated with a corresponding secondary communication link of the AP MLD. The first AP of the AP MLD transmits the frame over the first communication link of the AP MLD to a station (STA) of a STA MLD.
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for coordinated scheduling of service periods (SPs). In some aspects, an access point (AP) may receive timing information indicating an SP associated with an overlapping basic service set (OBSS) and may transmit, to its associated STAs, coordinated timing information indicating the timing of the SP in relation to its timing synchronization function (TSF) timer. In some aspects, the AP may adjust the timing information to account for an offset between its TSF timer and a TSF timer associated with the OBSS. In some other aspects, the AP may synchronize its TSF timer with the TSF timer associated with the OBSS. The AP may further communicate with the STAs based on the coordinated timing information. For example, the AP may schedule communications with the STAs to be orthogonal to communications in the OBSS during the SP.
Abstract:
This disclosure provides systems, methods, and apparatus, including computer programs encoded on computer-readable media, for priority access on a shared wireless channel. A priority station (STA), an access point (AP), or a network operator may activate a priority access service. The priority access service provides priority access to authorize priority STAs by allowing them to use more aggressive contention parameters for contention-based access of the wireless channel as compared to other STAs. In some implementations, non-priority STAs may be configured with weakened contention parameters to increase or ensure the likelihood that a priority STA will win contention for access to the wireless channel.
Abstract:
Techniques are described herein for selecting network parameters based on feedback in a wireless network. An access point (AP) may collect feedback information from a plurality of stations (STAs). The AP may broadcast out queries seeking information to the STAs. The AP may collect statistics about network parameters preferred by the STAs. The AP may select a network parameter based at least in part on collecting the statistics. The AP may collect the statistics without identifying the individual STAs that are responding. The AP may gather responses using a two-message system, where a first message informs the STAs about the feedback being requested and a second message requests that the STAs transmit the feedback to the AP.
Abstract:
Aspects of the present disclosure generally relate to wireless communications and, more particularly, to techniques for managing multi-link communications. Some aspects of the present disclosure provide techniques for configuring data unit and control response transmissions on multiple links. The data unit and control responses may be configured such that a control response transmission does not overlap with a data unit reception at a station that is without simultaneous transmission and reception capability.
Abstract:
This disclosure provides methods, components, devices and systems for extending target wake time (TWT) frame functionality. Some aspects more specifically relate to accommodating TWT wake intervals that do not satisfy threshold TWT wake intervals. In some examples, a first wireless communication device configures at least one of: one or more subfields of a field or one or more fields of an element that include TWT information in a TWT frame, where the subfield(s) or field(s) indicate a presence or absence of at least one optional field in the TWT frame, or an optional element in the TWT frame. The device then transmits the TWT frame to a second wireless communication device. After the second device receives this TWT frame, this device executes one or more operations associated with a TWT schedule or service period based at least in part on the configured subfield(s) or field(s) or the configured optional element.
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for identifying frames or packets of data that were received in error (such as incorrectly decoded or not received at all) by a receiving device for purposes of retransmission. In one aspect, a wireless device may form a number of frames for wireless transmission. Each of the frames may include a frame header and may be associated with a unique sequence number. In some implementations, for each of the frames, the wireless device may embed at least a portion of the unique sequence number into a portion of a control field or a delimiter field of the frame header. In some other implementations, for each of the frames, the wireless device may signal at least a portion of the unique sequence number using bit locations unassociated with a sequence number field of the frame header.