Abstract:
Some embodiments relate to a user equipment device (UE), and associated methods for enabling the UE to estimate velocity of the UE based on cellular parameters. In some embodiments, a first velocity of a UE may be estimated based on a first set of parameters associated with one or more cellular based metrics. Doppler measurements may be performed in response to the first velocity exceeding a velocity threshold for at least a time period. In some embodiments, performing (or conducting) the Doppler measurements may be triggered by (e.g., in response to) the first velocity exceeding the velocity threshold for at least the first time period and receiving an indication from a motion processor of the UE that the UE is in a non-static state. In addition, a second velocity of the UE may be estimated based on the first set of parameters and the Doppler measurements.
Abstract:
Some embodiments relate to a user equipment device (UE), and associated methods for enabling the UE to estimate velocity of the UE based on cellular parameters. In some embodiments, a first velocity of a UE may be estimated based on a first set of parameters associated with one or more cellular based metrics. Doppler measurements may be performed in response to the first velocity exceeding a velocity threshold for at least a time period. In some embodiments, performing (or conducting) the Doppler measurements may be triggered by (e.g., in response to) the first velocity exceeding the velocity threshold for at least the first time period and receiving an indication from a motion processor of the UE that the UE is in a non-static state. In addition, a second velocity of the UE may be estimated based on the first set of parameters and the Doppler measurements.
Abstract:
A device, system, and method uses a high power mode for a cellular connection. The method is performed at a device that is configured to establish a network connection to a network. The method includes detecting a number of at least one event that has occurred over a time period, the at least one event associated with operations used through the network connection, the at least one event indicative of a power to perform the operations that is greater than a predetermined power. When the number is at least a predetermined threshold, the method includes identifying the network connection as being in a high power state. The method includes activating settings when the network connection is in the high power state, the settings reducing a usage of the operations over the network connection.
Abstract:
This disclosure relates to techniques for securely performing connection release and network redirection in a wireless communication system. A wireless device may establish a radio resource control (RRC) connection with a first cell. The wireless device may receive a RRC connection release message from the first cell. The RRC connection release message may include an indication to redirect the wireless device to a second cell. The RRC connection with the first cell may be released. It may be determined whether security has been established with the first cell when the indication to redirect the wireless device to the second cell is received. A new serving cell may be selected based at least in part on whether security has been established with the first cell when the indication to redirect the wireless device to the second cell is received.
Abstract:
A device and method for transmitting user equipment capability information to a network. In a first mechanism, the device and method transmits carrier aggregation (CA) combinations supported by the user equipment in a priority order to the network. The priority order may be determined based on most recent camped bands and the neighbor bands of the most recent camped bands. In a second mechanism, the device and method transmits indicators corresponding to types of gapless measurements, where when an indicator is set to the user equipment being incapable of performing the type of gapless measurement, the capability message does not include individual indications for the bands for that type of measurement.
Abstract:
Methods, apparatuses and computer readable media are described that determine a connection state between a mobile wireless device and a wireless network upon detection of an interruption of a connection between the mobile wireless device and the wireless network. The mobile wireless device transmits an uplink resource allocation message to the wireless network, and when receiving no response to the uplink resource allocation message, transmits a random access message to the wireless network. When receiving no response from the wireless network to the random access message, the mobile wireless device executes a radio link failure procedure. In an embodiment, the uplink resource allocation message includes a unique identifier for an existing radio resource control connection between the mobile wireless device and the wireless network.
Abstract:
Various mechanisms for paging link-budget-limited (LBL) devices are disclosed, including: (1) transmitting paging message with non-conventional paging identifier; (2) transmitting paging message(s) with increased power; (3) repeating transmission of paging message to support combining at receiver. Various mechanisms for UE device to signal LBL status are disclosed, including, transmitting status flag or special value of DRX cycle to network node as part of tracking area update and/or attach request. The network node informs a base station of the device's LBL status as part of a paging message. (The network node may, e.g., assign an S-RNTI to the LBL device from a reserved subset of S-RNTI space.) The base station invokes a paging enhancement mechanism when paging an LBL device. Alternatively, the base station may page UE devices without knowledge of LBL status, e.g., by counting paging attempts for a given UE, and boosting power after the Nth paging attempt.
Abstract:
Methods and apparatus for the automated altering of wireless device states in response to detected connection behaviors. In one embodiment, a mobile device receives network parameters, some of which are incorrectly configured, from a base station (or access point). To ensure the proper behavior of the mobile device, the device reviews the network provided parameters to determine if one or more of the parameters has been set incorrectly. If so, the device locally alters its own settings to mitigate the incorrect operation associated with the incorrect network provided parameters. In second exemplary embodiment, a number of tolerances are utilized to ensure the proper operation of the mobile device while maintaining an active link. Upon violation of one or more of these tolerances, the device breaks the active link to the wireless network.
Abstract:
A user equipment (UE) is configured to join a standalone non-public network (SNPN). The receives SNPN information from one or more broadcast messages transmitted from a base station serving as an onboarding base station for the SNPN, determines whether the onboarding base station may be used for onboarding by the UE based on the SNPN information and UE SNPN information stored at the UE and onboards the UE to the SNPN when it is determined that the onboarding base station may be used for onboarding by the UE.
Abstract:
Apparatuses, systems, and methods for a user equipment device (UE) to perform a method for supporting a periodical radio access network (RAN) notification area (RNA) mechanism when small data transmission (SDT) is enabled for a user equipment device (UE). The method may include the UE receiving, from a base station, an indication enabling an SDT procedure along with an indication of an RNA timer configuration, transitioning, to a radio resource control (RRC) inactive state, and initiating an RNA timer based on the RNA timer configuration. The UE may, upon initiation of the SDT procedure, stop the RNA timer and, upon termination of the SDT procedure, start the RNA timer. During the SDT procedure, the UE may receive any of an SDT termination indication, an SDT subsequent transmission indication, or an SDT subsequent transmission termination indication that may include an updated RNA timer configuration (and/or RNA timer reconfiguration).