Abstract:
A curved surface shaped membrane pressure sensor for a moving member and the method for manufacturing the same, the sensor comprising an elastic curved plate and a subtype grid membrane switch formed on the curved plate, wherein the membrane switch is coupled to a cutting board shell of the moving member on one side opposed to the curved plate, and the subtype grid membrane switch is used for sensing the presence of pressure on the curved plate. The curved surface shaped membrane pressure sensor according to the present invention can not only meet the requirements on appearance of the moving member, but also effectively sense the touching to prevent injury on the object being detected, and additionally can effectively achieving the effects of fireproofing and waterproofing.
Abstract:
An apparatus, and an associated method, forms a user interface permitting input of input instructions to an electronic device. Input commands are evidence by tactile input forces applied to a force receiving surface. Force sensing elements are positioned to sense indications of the tactile input force. The force sensing element is caused to exhibit a selected input parameter value through application of a selected force thereto by application of a tightening torque to a fastener positioned in proximity to the force sensing element.
Abstract:
A micromachined or microelectromechanical system (MEMS) based push-to-pull mechanical transformer for tensile testing of micro-to-nanometer scale material samples including a first structure and a second structure. The second structure is coupled to the first structure by at least one flexible element that enables the second structure to be moveable relative to the first structure, wherein the second structure is disposed relative to the first structure so as to form a pulling gap between the first and second structures such that when an external pushing force is applied to and pushes the second structure in a tensile extension direction a width of the pulling gap increases so as to apply a tensile force to a test sample mounted across the pulling gap between a first sample mounting area on the first structure and a second sample mounting area on the second structure.
Abstract:
A sensor system is adapted for use with an article of footwear and includes an insert member including a first layer and a second layer, a port connected to the insert and configured for communication with an electronic module, a plurality of force and/or pressure sensors on the insert member, and a plurality of leads connecting the sensors to the port.
Abstract:
A surface mounted monitoring system is disclosed that is useful for detecting the presence of both ordinary and excessive loads on a surface, and for providing real-time or near real-time trending data. The system includes an array of force transducers disposed on the exterior surface of a structural member such as a roof. In an exemplary embodiment, transducers may be placed on an interior surface, such as embedded within insulation. The force transducers detect the magnitude of a load force acting on the surface. A data analysis module (DAM) may record force readings in a circular memory buffer, so that recent data can be recovered in the event of a catastrophic collapse. The DAM may also communicate with a monitoring device that can display real-time loading data to a user and perform other analysis.
Abstract:
A pressure detector is disclosed having an organic transistor, a pressure-detecting layer and a first electrode. The organic transistor includes an emitter, an organic layer, a grid formed with holes, and a collector, the organic layer being sandwiched between the emitter and the collector. The pressure-detecting layer is formed on the organic transistor such that the collector is sandwiched between the organic layer and the pressure-detecting layer. The first electrode is formed on the pressure-detecting layer such that the pressure-detecting layer is sandwiched between the collector and the first electrode. The area of the active region of the pressure detector is determined by the overlapped area of the electrodes, thereby reducing the pitch of the electrodes and thus the size of the pressure detector.
Abstract:
An embodiment is a method and apparatus to sense strain or pressure. A ferroelectric field effect transistor (feFET) structure has a semiconductor layer and a ferroelectric dielectric layer. The feFET structure is capable of sensing strain or pressure.One disclosed feature of the embodiments is a method to fabricate a strain or pressure sensor. A circuit is printed to form a ferroelectric field effect transistor (feFET) structure having a ferroelectric dielectric layer and a semiconductor layer. The feFET structure is capable of sensing strain or pressure.
Abstract:
Disclosed herein are a force realization apparatus using a superconducting flux quantum, which is capable of generating force proportional to a flux quantum number by including a micron-sized superconducting annulus or superconducting quantum interference device in an ultra-sensitive cantilever, and a force measurer using the same.
Abstract:
The present invention relates to a method of determining both pressures and temperatures in a high temperature environment. The present invention also relates to a method of determining temperatures about a pressure-sensing element using a bi-functional heater. In addition, the present invention preferably relates to a pressure sensor with the pressure-sensing element and a heating element both integrated into the sensor's packaging, preferably onto the diaphragm of the pressure sensor, and particularly to such a pressure sensor capable of operating at high or elevated temperatures, and even more particularly to such a pressure sensor wherein the heating element is capable of both heating, at least in part, the pressure-sensing element and monitoring the temperature of the application area. Preferably, the pressure-sensing element is formed from shape memory alloy (SMA) materials that can be used at high or elevated temperatures as a pressure sensor with high sensitivity.
Abstract:
A piezoelectric strain sensor and method thereof for detecting strain, vibration, and/or pressure. The sensor incorporates a sequence of piezoelectric and semiconductor layers in a thin-film transistor structure. The thin-film transistor structure can be configured on a flexible substrate via a low-cost fabrication technique. The piezoelectric layer generates an electric charge resulting in a modulation of a transistor current, which is a measure of external strain. The sensor can be formed as a single gate field-effect piezoelectric sensor and a dual gate field-effect piezoelectric sensor. The semiconductor layer can be configured from a nanowire array resulting in a metal-piezoelectric-nanowire field effect transistor. The single and dual gate field-effect piezoelectric sensor offer increased sensitivity and device control due to the presence of the piezoelectric layer in the transistor structure and low cost manufacturability on large area flexible substrates.