Abstract:
A method of implanting ionized icosaborane (B20HX), triantaborane (B30HX), and sarantaborane (B40HX) into a workpiece is provided, comprising the steps of (i) vaporizing and ionizing decaborane in an ion source (50) to create a plasma; (ii) extracting ionized icosaborane, triantaborane, and sarantaborane (collectively nullhigher order boranesnull) within the plasma through a source aperture (126) to form an ion beam; (iii) mass analyzing the ion beam with a mass analysis magnet (127) to permit ionized icosaborane (B20HXnull) or one of the other higher order boranes to pass therethrough; and (iv) implanting the ionized icosaborane (B20HXnull) or one of the other higher order boranes into a workpiece. The step of vaporizing and ionizing the decaborane comprises the substeps of (i) vaporizing decaborane in a vaporizer (51) and (ii) ionizing the vaporized decaborane in an ionizer (53).
Abstract:
An electron beam photolithographic process for patterning an insulation layer over a substrate. A conductive photoresist layer having a conjugate structure is formed over the insulation layer. An electron beam photolithographic process is conducted using a photomask so that the pattern on the photomask is transferred to the conductive photoresist layer.
Abstract:
The invention relates to a method and to apparatus for testing a substrate, in which a particle beam is directed onto the substrate and emitted secondary particles are detected with a detector and then evaluated. According to the invention the location of the secondary particles emitted on the substrate relative to the position of the detector is taken into consideration during testing.
Abstract:
A charged particle beam irradiation apparatus includes a specimen stage for holding a specimen; a specimen stage drive unit for moving the specimen stage; a detector for detecting the amount of displacement of the moved specimen stage; a charged particle beam optical unit for irradiating the specimen with a charged particle beam; an image display unit for displaying an image of the specimen, the image being formed by using charged particles or electromagnetic waves emitted from the specimen irradiated with the charged particle beam; a marker display unit for displaying a marker on each target position on an image of the specimen, on a viewscreen of the image display unit; a marker position input unit for designating reference positions on the image of the specimen; and a marker position calculation unit for calculating the position on which each marker is displayed on the image of the specimen on the viewscreen of the image display unit; wherein the position on the image of the specimen, on which each marker is to be displayed, is also moved based on both the calculated position of each marker, which has been calculated by the position calculation unit, and the amount of displacement of the moved specimen stage, the amount of displacement being detected by the detector.
Abstract:
A lithographic projection apparatus includes an active reflector in a radiation system providing a projection beam of radiation and/or in a projection system. The active reflector includes a body member, a reflective multilayer and at least one actuator controllable to adjust the surface figure of the reflecting multilayer, wherein the actuator exerts a substantial force component in a direction parallel to the surface figure of said reflective multilayer. The actuator may be operative to apply torques to said reflector.
Abstract:
Charged-particle-beam (CPB) apparatus and methods are disclosed that achieve efficient correction of imaging conditions such as shape-astigmatic aberrations, etc., caused by differences in the distribution of pattern elements within respective subfields of the reticle. Indices based on the pattern-element distributions within subfields are stored, together with corresponding optical-correction data for the subfields. As the subfields are exposed, respective data are recalled and the exposure is performed with optical corrections made according to the data. The indices are determined beforehand from pattern data at time of reticle manufacture. The tabulated data are rewritable with changes in apparatus parameters such as beam-current density and beam-divergence angle. Intermediate data can be determined by interpolation of tabulated data.
Abstract:
An apparatus for optically checking a pattern of a semiconductor wafer, includes (a) a laser beam source which radiate a laser beam to the pattern, (b) a beam collector which collects a laser beam reflected from the pattern, (c) a photodetector which detects a defect in a shape in the pattern, based on the laser beam collected by the beam collector, the laser beam source and the beam collector being movable together in an area above the semiconductor wafer.
Abstract:
An electron beam lithography system has an electron gun including at least one laser that is operable in a first mode to generate electrons for lithography. The electron beam lithography system is operable in a second mode to regenerate the photocathode of the electron gun by application of the laser. The photocathode includes a layer of cesium telluride.
Abstract:
The present invention provides an exposure technology capable of generating bitmap data with high efficiency, and making compatible higher resolution and higher speed control in exposure using pattern data in a bitmap format. An apparatus implementing the exposure technology comprises: a means for applying a charged particle beam or a light onto a sample, and exposing a desired pattern onto the sample; a data processing means for bitmapping the shape of the pattern, and generating the pattern shape data in the bitmap format; and a means for controlling the application of the charged beam or light onto the sample using the pattern shape data in the bitmap format, and the data processing means comprising a function of rejecting an overlap area between patterns from pattern vertex data defining the pattern shape; and a function of generating the pattern shape data in the bitmap format based on the result of the overlap rejection function.
Abstract:
A fast method of creating nanostructures comprising the steps of forming one or more electrically-charged regions (5) of predetermined shape on a surface (1) of a first material, by contacting the regions with a stamp for transferring electric charge, and providing electrically charged nanoparticles (7) of a second material, and permitting the particles to flow in the vicinity of the regions, to be deposited on the regions.