Abstract:
A Micro-Electro-Mechanical Systems (MEMS) inertial sensor systems and methods determine linear acceleration and rotation in the in-pane and out-of-plane directions of the MEMS inertial sensor. An out-of-plane linear acceleration of the MEMS sensor may be sensed with the first out-of-plane electrode pair and the second out-of-plane electrode pair. An in-plane rotation of the MEMS sensor may be sensed with the first out-of-plane electrode pair and the second out-of-plane electrode. An in-plane linear acceleration of the MEMS sensor may be sensed with the first in-plane sense comb and the second in-plane sense comb. An out-of-plane rotation of the MEMS sensor may be sensed with the first in-plane sense comb and the second in-plane sense comb.
Abstract:
A measuring device for determining a measured quantity having an oscillatory structure where an oscillation signal is detectable. The measuring device further includes a device for exciting the oscillatory structure by an excitation frequency to result in an oscillation of an oscillation frequency. The measuring device further has a device for processing the oscillation signal by a frequency depending on the oscillation frequency and the excitation frequency. Furthermore, the measuring device includes an evaluator for determining the measured quantity based on the oscillation signal processed.
Abstract:
Disclosed herein are systems and methods of angular rate and position measurement that combine a small footprint with hardening and isolation technologies that allow it to function in acceleration, angular rate, noise and vibration environments that cause other gyroscopes to either fail or to produce erroneous outputs. An example embodiment contains a triad of accelerometers, a triad of gyroscopes, analog and digital ancillary electronics and a processor housed within a housing which is also filled with vibration reducing encapsulating compound. The disclosed systems and methods of angular rate and position measurement are capable of measuring and correcting internal errors and perturbations caused by the longitudinal and angular accelerations and temperature excursions of aerospace vehicles, isolating the gyroscope elements from the effects of acoustic noise and vibration, and accurately measuring the relatively small pitch and yaw oscillations of the vehicle in its flight path trajectory.
Abstract:
A micromachine includes a movable section formed of a conductor and a support section formed of a conductor, wherein the movable section and the support section are separated from each other, an insulating layer is provided on the conductor, a conductive layer is provided on the insulating layer, and the conductive layer is formed so as to straddle the movable section and the support section.
Abstract:
A vibratory rotational rate gyroscope has a suspended assembly isolated from external vibrations by an arrangement of helical springs. This isolated assembly includes both the active components of the rotational rate gyroscope and a digital processing circuit. The digital processing circuit includes digital storage for both externally determined and internally determined unit-specific calibration values. These values provide seed values for startup processes, which improves loop startup time, and values for unit-specific electronic calibration. The digital processing circuit further converts all data to digital form. A digital communications protocol is used to transmit the calibration information and the outgoing data to and from the isolated assembly on only two conductors. Two additional conductors used for power. Four of the helical springs used in the suspension arrangement are used for these conductors such that no additional wiring is required.
Abstract:
To provide a compact and high performance gyroscope.A gyroscope (10) comprises an outer frame (11); an inner frame (12) positioned inside the outer frame and supported to be movable in one reciprocating direction; a plurality of proof masses (15) positioned inside the inner frame and supported to be movable in the direction orthogonal to the one reciprocating direction; a plurality of outer support suspensions (13) which connect the outer frame and the inner frame; a plurality of inner support suspensions (14) which connect the inner frame and each of the proof masses; actuators (16) for accelerating each of the proof masses; and detectors (17) for detecting displacement of the inner frame against the outer frame. The actuators oscillate the plurality of proof masses in-phase, and wherein Coriolis forces induced on each of the proof masses are summed up in the inner frame.
Abstract:
A movable mass forming a seismic mass is formed starting from an epitaxial layer and is covered by a weighting region of tungsten which has high density. To manufacture the mass, buried conductive regions are formed in the substrate. Then, at the same time, a sacrificial region is formed in the zone where the movable mass is to be formed and oxide insulating regions are formed on the buried conductive regions so as to partially cover them. An epitaxial layer is then grown, using a nucleus region. A tungsten layer is deposited and defined and, using a silicon carbide layer as mask, the suspended structure is defined. Finally, the sacrificial region is removed, forming an air gap.
Abstract:
A tuning fork type piezoelectric resonator element includes: a base including a pair of cuts provided opposite from each other and a constricted part located between the pair of cuts, a pair of resonator arms extending from the base, and an excitation electrode provided to each of the pair of resonator arms. When the pair of resonator arms vibrate at an inherent resonance frequency fcom of a common mode at which the pair of resonator arms swing in a same direction, a node of the vibration of the common mode is located at the constricted part.
Abstract:
A two-axes rate sensing MEMS system. The system includes two proof masses, two drive components, two drive sense components, two orthogonal sets of substrate electrodes, and a processing device. The processing device is in signal communication with the two proof masses, the two sense components, or the two sets of substrate electrodes. The processing device determines the rate of rotation about two orthogonal axes based on signals received from the two proof masses, the two sense components, or the two substrate electrodes. Rotation about one axis will induce proofmass motion in the plane of the substrate. Rotation about an orthogonal axis will induce proofmass motion out-of-plane of the proofmasses. The sensing scheme independently detects these proof mass motion, which can infer rate of rotation.
Abstract:
Vibration gyro circuitry, a vibration gyro unit, and a method for detecting a vibration gyro output, which enable detection of a rotational angular velocity with high sensitivity, are provided. The circuitry and the unit includes a differential amplifier circuit (4) for outputting a signal Vda corresponding to a difference (Vgl−Vgr) between output signals of two detection pieces of a vibration gyro (31), a synchronous detection circuit (5) for synchronously detecting the output signal Vda of the differential amplifier circuit (4), and a phase shift circuit for supplying to the synchronous detection circuit (5) a signal, as a timing signal Vck for the synchronous detection, which is phase-shifted with respect to a drive signal (an output signal of an adding circuit 1) Vsa supplied to the vibration gyro (31). The phase difference θps between the drive signal Vsa and the timing signal Vck is set on the basis of a phase difference characteristic of a detection sensitivity S for the output signal Vda of the differential amplifier circuit (4), which is obtained in advance under a condition where a rotational angular velocity is applied to the vibration gyro (31) in a driving state.