Abstract:
A four-direction adjustable optical module including a carriage and a CCD module is disclosed. The carriage includes a coupling window for coupling with the CCD module. Each of the two sides of the CCD module includes a screw hole and an elastic device. The elastic device slightly protrudes from the surface of the coupling window. While the CCD module and the coupling window are coupled, screws are employed to screw through the CCD module and into the screw holes of the coupling windows. Therefore, the elastic devices deform by the stress from the CCD module. By adjusting the tightness of the screws, the orientation of the CCD module rotating on the Z axis can be calibrated. Thus, the adjustable optical module of the invention can be calibrated at least in four directions.
Abstract:
In a line head, a plurality of light emitters are arrayed on a substrate in a first direction. Each of the light emitters is operable to emit a light beam. In a rod lens array, a plurality of rod lenses are arrayed in the first direction, and each of the rod lenses is adapted to focus the light beam emitted from an associated one of the light emitters onto a target surface. The substrate and the rod lens array are attached to a holder elongated in the first direction. Positioning members are provided at both end portions of the holder in the first direction. A relative position between the substrate and at least one of the positioning members is variable in a second direction perpendicular to the first direction.
Abstract:
A carriage module with an image capture unit for using in a scanning device is disclosed. The module includes a carriage having a sliding seat and a cam; a lens attached to the carriage device; an image capture unit capturing the light images from the lens; a PC board mounting the carriage; and a supporting plate supporting the PC board. The supporting plate includes a pin and formed on the carriage. The simple trimming mechanism adjusts the distance between the lens and the image sensor easily. So, the device not only improves the quality of the formation of image and also promotes the efficiency of operating.
Abstract:
A positioning mechanism for reflectors in a scanner is capable of tool-less assembling and precise positioning. The mechanism mainly includes a carrier, some angular positioning members, and resilient arms. The carrier is a plate-like member for mounting an optical assembly. The angular positioning members are mounted on the carrier and formed with cutoffs of supporting surfaces. The resilient arms extend from the carrier to outer sides of the supporting surfaces of the angular positioning members. The clearance of the end of resilient arm to the supporting surface is less than the thickness of the reflector to position the reflector simply, easily and precisely.
Abstract:
An apparatus for reading images includes: a first carriage having a lamp for exposing a manuscript and a first reflection mirror for reflecting reflected light from the manuscript; a second carriage including second and third reflection mirrors for returning the reflected light from the first carriage; an image forming optical unit for producing an image of the reflected light from the third reflection mirror on an image sensor, a body casing accommodating at least the first and second carriages, the image forming optical unit, and the image sensor, being covered on top thereof by a manuscript glass, and including a hole covered by a removable member on part of the surface thereof; and a mechanism for adjusting mirror angle for adjusting the angle of the second reflection mirror, wherein the mechanism for adjusting mirror angle is capable of adjusting the angle of the second reflection mirror from the hole.
Abstract:
In an image reader that adopts an off-axial optical system, an adjustable imaging mirror and a CCD fixed to a highly rigid structure. Since the relative position between reflecting mirrors and imaging mirrors can be set highly accurately, adjusting only the CCD-mounting position allows a required specification of the read image to be met. The imaging mirror can easily be adjusted without distorting the reflecting surface when necessary. The reflecting mirrors, the imaging mirrors, and the CCD-mounting-position adjusting means are positioned directly to reflecting-mirror supporting sections, imaging-mirror supporting sections, and CCD supporting sections, which are integrated with a carriage casing, and fixed to them. The CCD is fixed to the carriage casing with the CCD-mounting-position adjusting means. An imaging mirror close to a diaphragm and adjacent to the image is supported by a mirror adjusting plate. The position of the imaging mirror is adjusted by displacing the mirror adjusting plate.
Abstract:
An image reading apparatus includes a platen glass on which a document is placed, a light source which irradiates the document with a light beam via the platen glass, an imaging element which receives the light beam reflected from the document, so as to output an image signal, and an illuminance adjusting mechanism which adjusts the illuminance on a light receiving surface of the document by varying a distance between the light source and the platen glass while maintaining the number of light sources.
Abstract:
In an image reader that can adjust a distance between a platen glass and a close-contact-type image sensor (CIS) without disassembly, a CIS unit includes a CIS and a resilient body which biases the CIS toward the platen glass. A CIS roller holder includes a spacer, and a CIS holder which holds the spacer movably in the vertical direction as well as in the sub scanning direction with respect to the platen glass and is fixed to the CIS unit. Irregularities are formed on surfaces of the CIS holder and the spacer which face each other and are engageable by fitting. When the CIS unit is moved in the sub scanning direction and the CIS roller holder is brought into contact with one rib ,the CIS roller holder is brought into contact with the spacer at projections or recesses, thus changing a distance between the platen glass and the CIS.
Abstract:
The present invention provides an image input apparatus. The image input apparatus includes a board having an image sensor; a supporting member having a first supporting portion and a second supporting portion; a first fastening member; and a second fastening member. The image input apparatus is characterized in that the board is rigidly secured on the first supporting portion of the supporting member with the first fastening member installed in the first supporting portion, and the board is movably supported on the second supporting portion of the supporting member by the second fastening member installed in the second supporting portion.
Abstract:
The optical scanning apparatus has a first light source, a second light source disposed in a side-by-side relationship with the first light source in a sub-scanning direction, a deflector deflecting respectively a first light beam outgoing from the first light source and a second light beam outgoing from the second light source, and scanning over different scanned surfaces with the light beams, a first optical member provided in a first optical path between the first light source and the deflector, wherein the first light beam outgoing from the first light source passes through, a second optical member provided in a second optical path between the second light source and the deflector, wherein the second light beam outgoing from the second light source passes through, disposed beside the first optical member in the sub-scanning direction, the second optical member having the same optical characteristic as the first optical member, a holding member that holds a side face of the optical member and a side face of the second optical member and positions the first optical member and the second optical member in a main-scanning direction; and an adjusting mechanism adjusting an attitude of the holding member.