Abstract:
Antennas for electronic devices such as portable computers are provided. An antenna may be formed from a conductive cavity and an antenna probe that serves as an antenna feed. The conductive cavity may have the shape of a quartered rectangular cavity and may have first and second side walls, top and bottom walls, and first and second openings. The first and second openings may be planar in shape and may meet at a right angle along an axis. The antenna probe may be disposed along the axis. The axis at which the first and second openings of the cavity meet may be located at the corner of an electronic device housing. The portable computer may have upper and lower housing portions that meet at a gasket. The gasket may be placed adjacent to the cavity face openings so that radio-frequency signals may enter and exit the cavity through the gasket.
Abstract:
A reflecting mirror support mechanism has at least one reflecting mirror panel (1), a support base (3) to finally support the reflecting mirror panel (1), and at least one reflecting mirror support member (2). The reflecting mirror support member (2) has a structure in which a base section (2A) is mounted on the support base (3) and plural branch sections (2B) are mounted to the reflecting mirror panel (1).
Abstract:
A sector beam antenna with a scattering component, in which a desired radiation pattern can be obtained, is provided. The sector beam antenna with the scattering component provides parallel plates composed of two conductive plates disposed in parallel in which the distance between the parallel plates is longer than a half wavelength and shorter than one wavelength of a using wavelength, a primary radiator block having an H bend function disposed between the parallel plates, an input port opened at one of the parallel plates in order to supply power to the primary radiator block, and a scattering component made of a conductive material and disposed in parallel to an aperture being an opening end of the parallel plates in a state that a designated distance exists between the scattering component and the aperture. With this structure, the radiation pattern radiating from the aperture can be formed freely.
Abstract:
A microwave antenna and light tracking system includes a microwave antenna, a microwave source, a light sensor, and a beam-guide system. The beam-guide system has a mirror set with at least one guide microwave mirror operable to guide a microwave beam along a first portion of a microwave path toward the antenna. Each microwave mirror has embedded therein a light mirror positioned to direct a light beam along a first portion of a light path substantially coincident with the first portion of the microwave path but in a reverse direction from the antenna. The beam-guide system further includes a dichroic beam splitter including a dichroic beam splitter microwave mirror having a light-transparent window therethrough. The dichroic beam splitter is disposed in a second portion of the microwave path between the mirror set and the microwave transmit/receive device and in a second portion of the light path between the mirror set and the light sensor. The microwave source is positioned to direct a microwave signal to the dichroic beam splitter, whereupon the microwave signal is reflected along the second portion of the microwave path to the mirror set and thence to the antenna. The light sensor is positioned to receive light transmitted along the second portion of the light path through the light-transparent window of the dichroic beam splitter.
Abstract:
The teachings of the present application generally for an ultra-high frequency (UHF) antenna assembly which provides for a smaller package size with the same or better efficiency as a much larger antenna, particularly between 100 MHz to 500 MHZ. Particularly, through the combination of components and structures for implementing frequency selective surfaces (FSS) and high impedance structures (HIS) in combination with an anisotropic magneto-dielectric material, the present teachings provide for the use of both lower and higher frequency techniques through the operational frequency band and miniaturization, accurately improving the performance of UHF satellite communication antennas. Specifically improving performance in narrowband, with increases in efficiency, bandwidth, and lowered elevation angle radiation characteristics.
Abstract:
Base station antennas include an externally accessible active antenna module releasably coupled to a recessed segment that is over a chamber in the base station antenna and that is longitudinally and laterally extending along and across a rear of a base station antenna housing. The base station antenna housing has a passive antenna assembly that cooperates with the active antenna module.
Abstract:
A wireless communication apparatus includes a transmitting antenna; and a receiving antenna that receives a wireless signal transmitted from the transmitting antenna. Each of the transmitting antenna and the receiving antenna includes a plurality of circular loop antennas arranged concentrically in an identical plane, each of the plurality of circular loop antennas having a loop perimeter approximately equal to an integer multiple of one wavelength determined from a frequency in a wireless communication; and a plurality of feeding sections individually connected with the plurality of circular loop antennas. A central axis of the plurality of circular loop antennas of the transmitting antenna and a central axis of the plurality of circular loop antennas of the receiving antenna are arranged approximately on a straight line. Thus, a wireless signal is transmitted between the circular loop antennas having a loop perimeter of a transmitting side and a receiving side.
Abstract:
When a plurality of antenna elements tuned to respective different frequency bands are closely disposed, the performance (the band, the radiating pattern, and so on) of each antenna element may deteriorate. In order to solve the problem, a multiband antenna according to the present invention is provided with: a conductive reflection plate; a frequency selective surface that is disposed so as to at least partially face the conductive reflection plate, that transmits therethrough electromagnetic waves in a first frequency band, that reflects thereon electromagnetic waves in a second frequency band that is a higher frequency band than the first frequency band, and that has a plurality of openings; a plurality of first antenna elements that are disposed in a region sandwiched between the conductive reflection plate and the frequency selective surface and that are tuned to a first frequency included in the first frequency band; and a plurality of second antenna elements that are disposed on a surface opposite the surface of the frequency selective surface facing the first antenna elements, that are fed through feeders passing through the openings, and that are tuned to a second frequency included in the second frequency band.
Abstract:
A semiconductor device includes an active device. The semiconductor device further includes a plurality of antenna grounds electrically connected to the active device. The semiconductor device further includes a plurality of patch antennas, wherein each patch antenna of the plurality of patch antennas is over a corresponding antenna ground of the plurality of antenna grounds. The semiconductor device further includes a plurality of reflectors, wherein each antenna ground of the plurality of antenna ground is between a corresponding patch antenna of the plurality of patch antennas and a corresponding reflector of the plurality of reflectors. An area of each antenna ground of the plurality of antenna grounds is greater than an area of each reflector of the plurality of reflectors.
Abstract:
Provided is a frequency selective surface including a conductor plane (101), nine loop slots (102) each formed to be surrounded by the conductor plane (101), and a capacitance component (103) disposed to straddle the loop slots (102) in a width direction, both ends of the capacitance component being connected to the conductor plane (101) at a position near the loop slots (102). The conductor plane (101) and the loop slots (102) each formed to be surrounded by the conductor plane (101) constitute a unit cell (110). The unit cells (110) are two-dimensionally periodically arranged. One or more (four in the case of FIG. 1) capacitance components (103) disposed to straddle the loop slots (102) in the width direction are provided for each loop slot (102). Operating frequencies can be easily changed by adjusting only a component connected to the unit cell, or a part of metallic patterns.